
RT-EP: A Fixed-Priority Real Time Communication
Protocol over Standard Ethernet

José María Martínez and Michael González Harbour

Departamento de Electrónica y Computadores
Universidad de Cantabria, 39005 - Santander, SPAIN

{martinjm,mgh}@unican.es

Abstract. This paper presents the design and implementation of RT-EP
(Real-Time Ethernet Protocol), which is a software-based token-passing
Ethernet protocol for multipoint communications in real-time applica-
tions, that does not require any modification to existing Ethernet
hardware. The protocol allows a fixed priority to be assigned to each
message, and consequently well-known schedulability analysis tech-
niques can be applied. A precise model of its timing behavior has been
obtained. Furthermore, this protocol provides the ability of recovering
from some fault conditions. It has been ported to an implementation of
the Minimal Real-Time POSIX standard called MaRTE OS [10], and is
being used to support real-time communications in an implementation of
Ada’s Distributed Systems Annex (RT-GLADE). It has been success-
fully used to implement a distributed controlled for an industrial robot.

Keywords: Real-Time, Embedded Systems, Networks, Ethernet, Distributed
Systems, Ada 95, Modelling, Schedulability.

1 Introduction1

Ethernet is by far the most widely used local area networking (LAN) technology in
the world today, even though it has unpredictable transmission times because it uses a
non-deterministic arbitration mechanism (CSMA/CD). Several approaches and tech-
niques have been used to make Ethernet deterministic in order to take advantage of its
low cost and higher speeds than those of real-time field buses available today (like the
CAN bus [9], for example). Some of these approaches are the modification of the
Medium Access Control [7], the addition of transmission control [2], a protocol using
time-triggered traffic [14], or the usage of a switched Ethernet [3].

The objective of this work is to achieve a relatively high speed mechanism for real-
time communications at a low cost, while keeping the predictable timing behaviour
required in distributed hard real-time applications. The communication protocol pro-
posed in this work is called RT-EP (Real-Time Ethernet Protocol), and can be classi-
fied as an addition of a transmission control layer over Ethernet, since it is basically a
token-passing arbitration in a bus [6], capable of transmitting fixed-priority messages.

1. This work has been funded in part by the Comisión Interministerial de Ciencia y Tecnología (CICYT)
of the Spanish Government under grant number TIC2002-04123-C03-02 (TRECOM), and by the IST
Programme of the European Commission under project IST-2001-34820 (FIRST).

It provides a Real-Time Ethernet communication without modifying the existing hard-
ware, and has been designed to avoid collisions in Ethernet media.

In a previous work we presented a preliminary version of RT-EP [11] in which we
discussed the fault-recovery mechanism and the way in which the protocol can be
modelled using the MAST [12] Real-time Modelling and Analysis Suite. We also dis-
cussed the implementation, in C language, of RT-EP in MaRTE OS [10] and we also
measured the overheads it introduces.

In this paper we present a complete description of the protocol and we propose the
Ada language for its implementation, to ensure a smooth integration with DSA mid-
dleware such as RT-GLADE [8], or Polyorb [15] in the future. By porting the protocol
to Ada we can also take advantage of the reliability and robustness that the Ada lan-
guage provides, and we open the door to a possible future extension to support real-
time distribution in the Ravescar profile [1]. We also have done a clean-up of the pro-
tocol, we have generalized the architecture to make it independent of the underlying
communications network, and we have developed a more precise real-time model to
be used with MAST, with measurements performed on a MaRTE OS platform. The
RT-EP protocol is being used to support real-time communications in an implementa-
tion of Ada’s Distributed Systems Annex (DSA) called RT-GLADE. It has also been
successfully used to implement a distributed controller for an industrial robot.

The paper is organized as follows. Section 2 introduces how the protocol works. In
Section 3 we describe the state diagram that controls the behaviour of the protocol. In
Section 4 we explain the layout of the packets used in the protocol. Section 5 discusses
some details of the current implementation. Section 6 gives some details about the
MAST model that describes the timing behaviour of the protocol. In Section 7 we pro-
vide some results of the metrics taken in a particular platform. Section 8 briefly
describes the robot system that has been implemented with RT-EP. Finally, Section 9
gives our conclusions.

2 Description of the Communication Protocol

RT-EP has been designed to avoid collisions in the Ethernet media by the use of a
token. It implements an adaptation layer over the Medium Access Control in Ethernet.
The protocol is used to transmit messages that have a fixed priority assigned to them. It
works by dividing the message transmission process into two phases: a priority arbitra-
tion phase in which the highest priority message to be transmitted is determined, and
the transmission of the message itself. With this mechanism, the protocol does not
require any clock synchronization mechanism to keep a synchronized notion of time in
all the nodes.

Messages size is limited by the parameter RT-EP_MTU (RT-EP Maximum Trans-
mission Unit) which depends on the MTU of the underlying protocol (1492 bytes for
Ethernet). Message packets are non preemptible, and therefore there is a bounded
blocking time that has to be taken into account during the analysis. We do not provide
fragmentation of messages at this layer, although it would be easy to add. In that case

large messages would be partitioned into several packets, and preemption would be
possible up to the packet-size limit.

Each station (processing node or CPU) has a transmission priority queue, in which
all the packets to be transmitted are stored in priority order. Each station also has a set
of reception priority queues that provide the equivalent of virtual separate channels for
sending messages to the desired recipient. Packets with the same priority are stored in
FIFO order. The number of reception queues can be configured depending on the
number of application threads (or tasks) running in the system and requiring reception
of messages. The common usage model is that each application task has its own chan-
nel or reception queue reserved for itself, and in that way the sender can send messages
addressed to that specific task, through the desired channel. Channels are identified
with a number called the channel ID.

The network is organized as a logical ring over a
bus, as shown in Fig. 1. The ring is configured stati-
cally, and every station has access to the full ring con-
figuration, including topological information with the
successor of every station, so that the logical ring can
be built. The protocol works by rotating a token in this
logical ring. The token holds information about the
station having the highest priority packet to be trans-
mitted and its priority value.

For the transmission of one message, an arbitrary station is designated as the
token_master. During the priority-arbitration phase the token travels through the whole
ring, visiting all the nodes, in a type of packet called a Regular Token. Each station
checks the information in the token to determine if one of its own packets has a priority
higher than the priority carried by the token. In that case, it changes the highest priority
station and associated priority in the token information; otherwise the token is left
unchanged. Then, the token is sent to the successor station. This process is followed
until the token arrives back at the token_master station, finishing the arbitration phase.

In the message-transmission phase the token_master station sends a packet with a
token of a special type called a Transmit Token, addressed to the station with the high-
est priority message, which then sends its message in a packet of the type Info Packet.
The receiving station becomes the new token_master station.

The actual behaviour of the protocol is a bit more complex because it is designed to
tolerate some faults. Otherwise, the loss of a token, for example, would cause commu-
nications to be stopped. We have considered three possible faults to be handled by the
protocol:
• Failure of a Station: A reconfiguration of the ring is performed to leave the failing

station out of the ring.
• Loss of a packet: A retransmission takes place after a configurable timeout.
• Busy station (a station that takes too long to respond): A retransmission will occur,

but if it was not caused by a packet loss a duplicate packet would be generated.
We need to trash such duplicate packets.

Fig. 1 Logical ring

The real-time behaviour is only guaranteed in case of the loss of a packet. A busy
station error is a consequence of bad system design, and should be detected and cor-
rected at system design time. The failure of a station is a major fault that would require
fault-tolerant techniques with redundant software and/or hardware, which are outside
the scope of our work. Therefore, we provide some level of recovery from this error,
but real-time response is not guaranteed during the recovery process.

The recovery method for these errors is based on simultaneous listening to the
media by all the stations, in a promiscuous mode. Each station, after sending a packet,
listens to the media for an acknowledge, which is the correct transmission of the next
frame by the receiving station. If no acknowledge is received after some specified
timeout, the station assumes that the packet is lost and retransmits it. The station
repeats this process until an acknowledge is received or a specified number or retrans-
missions is produced. In the latter case the receiving station is considered as a failing
station and will be excluded from the logical ring. Because retransmission opens the
door to duplicate packets if a station does not respond in time, a sequence number is
used to discard duplicates at the receiving end.

3 RT-EP as a State Machine
RT-EP can be described as a state machine for each station, in order to understand

its functionality and to identify operations involved in the timing model. Fig. 2 shows
the states and the transitions among them using UML notation [13], which is based on
Harel’s statecharts [4]. The description of the different states is as follows:
• Offline. It is the initial state reached during configuration time. Each station reads

the configuration describing the logical ring and gets configured as one of its
stations. The station configured as the initial token_master (isTokenMaster =
True) performs a Send_Initial_Token action and then enter the Error_Check state.
The others are set to the Idle state.

• Idle. In this state, the station listens for the arrival of any packet, discarding
possible duplicates. In addition, due to the promiscuous mode (every station
listens to every packet), it discards all the packets not specifically addressed to this
station. When a non-discarded packet is received, a check is made to determine its
type: if it is an Info_Packet (Message Reception event) the station stores the
message and performs a Send_Initial_Token action; if it is a Token Packet (either a
Token Reception or a Transmit Token Reception event), three different actions can
be performed: Send_Info (if a Transmit Token is received or if the token_master
receives a regular token and it has the highest priority message to transmit),
Send_Token (if a regular token is received and the station is not the current
token_master), or Send_Permission (when the token_master receives a regular
token and is not the station with the highest priority message).

• Error Check. The station starts listening to the media after transmitting a frame. If
a correct packet is detected the station switches to the Idle state. If not, after a
configurable timeout, the station tries to recover from the error by resending the
last packet. If the number of resent packets exceeds a configurable maximum, the

successor station is considered to have failed. The failing station identifier is
transmitted in the token and is erased from the ring in all the stations. No
subsequent info message transmission is allowed for that station

• Delay. This state represents a delay when sending the token. It is introduced to
reduce the overhead incurred by the execution of the protocol operations in the
different stations. Its interval is a configurable parameter inside the protocol, with
which we can trade message latency against processor overhead.

The actions that appear in the state machine are:
• Send_Initial_Token. The station performing this action becomes the current

token_master. A token is sent to the successor station with the highest of the
priorities of the messages pending in the transmission queue, if any. Then, the
station switches to the Error_Check state.

• Send_Token. The station compares the priority of the token with the highest
priority element on its transmission queue, updates the token with its own priority
if it is higher, and sends the token to next station. Then, it switches to the
Error_Check state.

Fig. 2 RT-EP state machine

Offline

Idle Error Check

Delay

[NOT isTokenMaster]
[isTokenMaster]

Token Reception [isTokenMaster AND NOT isAllowedToSend]
/ Send Permission

Token Reception [isTokenMaster AND isAllowedToSend]
/ Send Info

Transmit Token Reception / Send Info

Message Reception / Recv Info; Send Initial Token

Token Reception [NOT isTokenMaster] / Send Token
TimeOut

TimeOut [isMaxNumRetries AND NOT (isTokenMasterFailure AND NOT isTokenMasterAllowedToSend

TimeOut

/ Reconfigure Ring;

/ Retry Last Action
[NOT isMaxNumRetries]

/ Send Initial Token

[isMaxNumRetries AND isTokenMasterFailure
AND NOT isTokenMasterAllowedToSend

AND LastAction = Send Token]

Send Permission

AND LastAction = Send Token)] / Reconfigure Ring; Send Initial Token

ACK Reception

• Send_Permission. The token_master role is lost and a Transmit Token is built and
sent to the Station Address recorded in the last received token, which is the station
with the highest priority message. Then, the Error_Check state is reached.

• Send_Info. This is the action performed when a station has the highest priority
packet in the ring and is allowed to transmit it. Then it switches to the
Error_Check state.

• Recv_Info. The information received inside the Info_Packet is written into the
appropriate reception queue and the station performs a Send_Initial_Token action,
becoming the new token_master.

4 RT-EP Packets
RT-EP packets are carried inside the Data field of the lower-layer protocol. We are

currently using Ethernet for the lower layer, but it can be easily replaced by another
protocol. Ethernet II has the following structure [5]:

The Type field identifies what type of high-level network protocol is being carried
in the data field. We use a value of 0x1000 for the Type field, which represents an
unused number protocol that could be changed if the protocol is registered in the
future.

The maximum message size of Ethernet is 1500 bytes and therefore the RT-
EP_MTU parameter is 1492 bytes (Ethernet MTU minus the RT-EP info packet
header). The protocol packets are carried inside the Data field of the Ethernet frame,
which must be at least 46 bytes long. Due to this restriction, if the packet to be sent is
less than 46 bytes long, it is padded with zeros to build a 46 bytes packet. Our protocol
has two types of packets:
• Token Packet: it is used to transmit the tokens and has the following structure:

The Packet Identifier field is present also in the Info Packet and is used to identify
the type of the packet. It can hold two different values for this type of packet:

• Regular Token, used in the arbitration phase to find the highest priority packet

• Transmit Token, which grants permission to transmit a message

The Priority indicates the highest priority element in the ring, found during the
rotation. The Packet Number is used as a sequence number to eliminate duplicate
packets. Each station transmits the received Packet Number incremented by one.

8 bytes 6 bytes 6 bytes 2 bytes 46-1500 bytes 4 bytes

Preamble Destination
Address

Source
Address Type Data Frame Check

Sequence

1 byte 1 byte 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

Packet
Identifier Priority Packet

Number
Token

Master ID
Failing
Station

Failing
Station ID Station ID

Token Master ID stores the identification of the current token_master station,
which is needed to recover from a token_master failure. Failing Station indicates
whether there is a failing station or not, and Failing Station ID specifies which
station, if any. By including this information in the token it is possible for the
stations in the ring to remove the failing station from their local configuration,
discarding any further messages to this station. The Station ID stores the station
with the highest priority packet.

• Info Packet: it is used to transmit data and has the following structure:

The Packet Identifier has a value that identifies it as an Info Packet. The Priority
field holds the priority of the packet being transmitted. As well as in the Token
Packet, Packet Number is the sequence number. The Channel ID is used to
identify the destination queue in the destination station. The Info Length is the size
of the data stored in the Info field. In Ethernet, if the information to be transmitted
is less than 38 bytes long, padding is performed in order to get the 46 data bytes
required in an Ethernet frame.

5 RT-EP Implementation

The functionality and architecture of the communication protocol are shown in Fig.
3. This protocol offers four primitives to any application or middleware using the net-
work: Init_Comm (to initialize the network), Send_Info (to send a message),
Receive_Info (to receive a message), and Try_Receive_Info (a non-blocking version of
receive message). To send a message it is necessary to encapsulate the information in a
message type, which is used both for transmission and reception. This message type
contains the destination station address, the destination channel ID, the priority of the
message and the application data.

Inside RT-EP there is only one task, the Main Communications Task, that is respon-
sible of reading the packets from the transmission queue and of writing the received
packets into the reception queues. Usually this task executes at a priority level higher
than that of the application tasks, and its overhead is modelled as extra load using the
model described in Section 6. In addition, there is an interrupt service routine (ISR)
that handles incoming packets, and awakens the internal task if necessary.

We have attempted to make the protocol as system independent as possible. To
achieve this we have made separate modules that deal with the system, the Ethernet
frames and the network drivers. If someone needs to port the protocol to another com-
munications subsystem (for instance, on top of UDP), only the modules under the
adaptation layer need to be changed. The protocol has a clear interface with functions
to identify the stations and to construct the frame that is going to be sent through the
network.

1 byte 1 byte 2 bytes 2 bytes 2 bytes 0-RT-EP_MTU bytes

Packet
Identifier Priority Packet

Number Channel ID Info Length Info

We have provided Ada and C interfaces to the protocol. We will now show the Ada
interfaces for the application and the adaptation layer.

5.1. Ada Application Interface
The main primitives to be used by an Ada application or middleware are the follow-

ing:
• Init_Comm: When initializing the protocol, the Main Communication Task is

started. The priority of this special task has to be configured at compilation time
and it has to be higher than that of the tasks that are communicating through the
network:
procedure Init_Comm;

• Send_Info: To implement this primitive two operations are provided:

• Generic Send_Info:
generic

type Data_Type is private;
procedure Generic_Send_Info

(Destination_Station_ID : in Station_ID;
 Channel_ID : in Channel;
 Data : in Data_Type;
 Data_Priority : in Priority);

• Stream-based Send_Info:
procedure Send_Info

(Destination_Station_ID : in Station_ID;
 Channel_ID : in Channel;
 Data : in Stream_Element_Array;
 Data_Priority : in Priority);

A
da

pt
at

io
n

 L
ay

erSend
Info

Receive
Info

Try Receive
Info

Tx Queue

Rx Queue

Rx Queue

Rx Queue M
ai

n
C

om
m

un
ic

at
io

n
Ta

sk

Init
Comm

M
id

dl
ew

ar
e

or
 A

pp
lic

at
io

n
Ta

sk
s

U
nd

er
ly

in
g

Pr
ot

oc
ol

Fig. 3 Functionality and architecture of RT-EP

• Receive_Info: In the same way as in Send_Info, we provide two sets of operations:
generic, and stream-based. To save space we only show the blocking receive
procedures, but similar non-blocking procedures exist.

• Generic Receive_Info (blocking):
generic

type Data_type is private;
procedure Generic_Recv_Info

(Source_Address : out Station_ID;
 Channel_ID : in Channel;
 Data : out Data_Type;
 Data_Priority : out Priority);

• Stream-based Receive_Info (blocking):
procedure Recv_Info

(Source_Address : out Station_ID;
 Channel_ID : in Channel;
 Data : out Stream_Element_Array;
 Last : out Stream_Element_Offset;
 Data_Priority : out Priority);

5.2. Adaptation layer.
This API must be implemented for the specific underlying protocol:

• Set_Promiscuous_Mode: Sets the promiscuous mode in the system. The
protocol has to be able to receive all the frames transmitted in the media.
procedure Set_Promiscuous_Mode;

• Open_RTEP_Comm: Makes the required initialization to be able to read/
write from/to the media. Further calls to this function will have no effect.
procedure Open_RTEP_Comm;

• Close_RTEP_Comm: Closes the media.
procedure Close_RTEP_Comm;

• Send_RTEP_Packet: Sends the RT_EP_Packet to the Dest_Station
procedure Send_RTEP_Packet

(Dest_Station : in Station_ID;
 RT_EP_Packet : in Stream_Element_Array);

• Recv_RTEP_Packet: Returns a packet addressed to Dest_Station.
procedure Recv_RTEP_Packet

(Dest_Station : out Station_ID;
 Source_Station : out Station_ID;
 RT_EP_Packet : out Stream_Element_Array;
 Last : out Stream_Element_Offset);

6 MAST Model of RT-EP

This subsection describes the modelling information of RT-EP according to MAST
(Modelling and Analysis Suite for Real-Time Applications) [12]. This methodology
provides an open-source set of tools that enables engineers developing real-time appli-
cations to check the timing behaviour of their application, including schedulability
analysis for checking hard timing requirements.

We have built a MAST model to characterize a communications system based on
RT-EP, so that the timing behaviour of the distributed hard real-time application can be
analysed. The model is divided into three elements: network drivers, the network
itself, and the network scheduler.

6.1. Network drivers
In MAST, the overhead of the protocol in the different processors in the ring is

modelled by a set of network drivers, one for each processor. The drivers previously
available in MAST were not appropriate for modelling the complexity of the RT-EP
protocol, and therefore we had to create a new driver called the RTEP_Packet_Driver.
Its most important attributes are the following:
• Packet Server: the task executing the driver in the corresponding processor.
• Packet Interrupt Server: It represents the interrupt routine that stores the frames

received from the net.
• Packet ISR Operation (ISR): Code executed by the Packet Interrupt Server.
• Packet Send Operation (PSO): Code executed for the Send_Info action.
• Packet Receive Operation (PRxO): Code executed for the Recv_Info and

Send_Initial_Token actions.
• Number of Stations (N).
• Token Manage Operation (TMO): Maximum of the times required to send the

token in the Send_Token or the Send_Permission actions.
• Token Check Operation (TCO). Code executed in the Idle state upon the

Token_Reception event, that determines the following state.
• Token Delay (TD). The configurable time of the Delay state.
• Packet Discard Operation (PDO). Code executed when packets addressed to

other stations are received, because of the network promiscuous mode used.
• Token Transmission Retry (TR): Maximum number of faults (and their

retransmissions) that we allow in each token arbitration.
• Packet Transmission Retry (PR): Maximum number of retransmissions when

transmitting an Info Packet.
• Timeout (T): Timeout used to detect a message transmission failure.

• Token Retransmission Operation (TRO): Time consumed in a token
retransmission. It corresponds to Retry_Last_Action in the Error_Check state,
when the retransmitted packet is a token.

• Packet Retransmission Operation (PRO): Time consumed in an Info_Packet
retransmission. It corresponds to Retry_Last_Action in the Error_Check state,
when an info packet is retransmitted.

6.2. Network
For modelling the ethernet we use a model already built in MAST that is called the

Packet_Based_Network. Its most important attributes for modelling the timing behav-
iour are the following:
• Throughput (Rb): It is the bit rate of the media.
• Max Packet Transmission Time (MaxPTT):
• Min Packet Transmission Time (MinPTT).
• Max Packet Size and Min Packet Size: They are 1492 and 72 respectively.
• Max Blocking: The maximum blocking caused by the non preemptability of

message packets. In RT-EP, it is calculated as:

it represents a complete rotation of the token (N-1 tokens sent), plus the blocking
effect caused by the transmission of non preemptible packet considering the
possible faults in the info packet (PR*(PRO+T)), and also in the tokens
(TR*(TRO+T)).

6.3. Scheduler
Each network mush have a primary scheduler for its messages with a scheduling

policy. For the latter we use the FP_Packet_Based policy that models fixed priority
messages composed of non-preemptible packets. Its main attribute is:
• Packet Overhead. This is the overhead caused by the protocol information that

needs to be sent before or after each packet. It is calculated as:

MaxPTT 1492 8⋅() Rb⁄=
MinPTT 72 8⋅() Rb⁄=

N() MinPTT ISR TCO TMO+ + +() N 1–() TD⋅()

PSO ISR PRxO MaxPTT 34 8⋅
Rb

------------- PR PRO T+()⋅+ + + + +
 TRO T+() TR⋅

+ +

+

N 1+() MinPTT ISR TCO TMO+ + +() N TD⋅()

TRO T+()

+

TR 34 8⋅
Rb

-------------+⋅

+

which is the time spent to send a number of tokens equal to the number of stations,
N, performing a complete circulation of the Token, plus one Transmit Token. The
time needed to send a token is calculated as the sum of the Min Packet
Transmission Time, Min_PTT, the time to get the packet from the media (ISR), the
time of the Token Check Operation, and the time of the Token Manage Operation.

We also take into account the number of token retries (TR) and the cost of the
associated Token Retransmit Operation (TRO) and the Timeouts (T). We also have
to add the time to send the protocol bytes.

7 Evaluation under MaRTE OS
We have obtained metrics of the worst, average, and best case response times of the

different operations executed in the RT-EP protocol, measured in a minimum platform
composed of two industrial PCs (Pentium III 750 MHz) running MaRTE OS and con-
nected by a 100 Mbps Ethernet network. The application consisted of five tasks in
each PC sending each other average-size messages through five different channels.
The results are shown in Table 1.

It is also interesting to show the parameters of the network overhead model, includ-
ing the time it takes to perform a token rotation, the Packet Overhead parameter, and
the Max Blocking parameter (see Table 2). The token rotation was measured with a
protocol delay of 100 µs. The other two parameters were calculated using the data
from Table 1 in the corresponding formulas.

Table 1. Measured execution times for the RTEP driver operations

RTEP driver operation Worst (µs) Best (µs) Av (µs)

Packet ISR (ISR) 6.48 2.50 3.74

Packet Send (PSO) 60.39 47.98 49.72

Packet Receive (PRxO) 93.13 76.12 77.30

Token Manage (TMO) 41.86 34.70 35.10

Token Check (TCO) 15.65 8.673 9.515

Packet Discard (PDO) 6.169 1.545 1.685

Token Retransmit (TRO) 48.03 36.25 36.79

Packet Retransmit (PRO) 60.38 47.98 49.72

Table 2. Main Parameters of the Network Overhead Model

Operation Worst case (µs) Best case (µs) Avg. case (µs)

Token Rotation Time 297.56 287.01 288.83

Packet Overhead 411.97 357.62 365.06

Max Blocking 521.58 451.95 461.07

Due to the priority arbitration prior to sending the packet, the effective throughput
of the media gets degraded. In order to calculate which is the effective bit rate achieved
with the protocol we have extracted two different cases:
• Synchronized Tx/Rx: A “synchronized” communication occurs when the stations

agree to transmit or receive by any method, producer-consumer, stop and wait, etc.
In this case we don’t have blocking and the attribute that influences the bit rate is
the Packet Overhead:

In this case we have achieved an effective bit rate of 22.464 Mbps
• General case: The transmission of a packet in the network is totally asynchronous.

In this case we have to consider the maximum blocking (521.58 µs with the
measured values):

With this consideration the effective bit rate is 11.336 Mbps.
Another important factor of the protocol is how the delay introduced in the configu-

ration influences the load introduced by the protocol. With the delay attribute we can
control the protocol CPU utilization, as shown in Table 3.

As it can be seen from the table, the optimum values from the utilization point of
view, are with a delay value between 30 and 100 µs. In this band we achieve a low uti-
lization with a quick response from the protocol.

Table 3. Driver overhead as a function of the protocol delay

Delay (µs) CPU Utilization

0 12 %

1 12 %

10 12 %

30 7.8 %

50 6.0 %

100 3.8 %

1.000 0.5 %

RbT
1492 8⋅

PacketOverhead MaxPTT+
---=

RbT
1492 8⋅

MaxBlocking PacketOverhead MaxPTT+ +
---=

8 RT-EP demonstrator

Once the protocol is designed, implemented and characterized, it is important to use
it in a demonstrator in order to confirm its validity in hard real time communications.
The chosen demonstrator is an industrial robot arm for maintenance in radioactive
environments. A diagram of this platform is shown in Fig. 3.

The control software is written in Ada and the distribution is done through RT-
GLADE [8] implemented on top of RT-EP. Through this demonstrator we have con-
firmed the validity of the protocol.

9 Conclusions
We have presented an implementation of a software-based token-passing Ethernet

protocol for multipoint communications in real-time applications, that does not require
any modification to existing Ethernet hardware, and does not require any clock syn-
chronization mechanism. The protocol is based on fixed priorities and thus common
tools for fixed priority schedulability analysis can be used to analyse the timing behav-
iour of applications using it. For this purpose, a precise timing model of the protocol
has been obtained.

In order to avoid collisions in the ethernet media the protocol uses a token passing
mechanism that causes the utilization of the network to be rather low compared to the
usual utilization level in standard ethernet. However, the bit rate obtained is still larger
than in most field busses, so compared to them we can get the same predictability level
at a very low cost and with high performance. The overhead caused by the network
driver can be traded against the latency of message passing in the network by means of

Ether-

Arm Controller
Interface

Human - Machine

Fig. 3 Demonstrator platform

the protocol delay parameter. Consequently, RT-EP has proven to be an excellent
choice for real-time communications for systems that do not have a large number of
stations.

Although the current implementation is in MaRTE OS, it is important to say that the
protocol is suitable for other Real-Time OSs and underlying protocols.

References
[1] Alan Burns. “The Ravenscar Profile”. Department of Computer Science, University of

York, UK

[2] Chiueh Tzi-Cker and C. Venkatramani. “Fault handling mechanisms in the RETHER
protocol”. Symposium on Fault-Tolerant Systems, Pacific Rim International, pp. 153-159,
1997.

[3] Choi Baek-Young, Song Sejun, N. Birch, and Huang Jim. “Probabilistic approach to
switched Ethernet for real-time control applications”. Proceedings of Seventh
International Conference on Real-Time Computing Systems and Applications, pp. 384-
388, 2000.

[4] Harel David, Politi Michael. “Modeling reactive systems with statecharts: the statemate
approach“. McGraw-Hill, 1998

[5] IEEE Std 802.3, 2000 Edition: “IEEE Standard for Information technology--
Telecommunications and information exchange between systems--Local and metropolitan
area networks--Common specifications--Part 3: Carrier sense multiple access with
collision detection (CSMA/CD) access method and physical layer specifications”

[6] IEEE Std 802.4-1990. “IEEE Standard for Information technology--Telecommunications
and information exchange between systems--Local and metropolitan area networks--
Common specifications--Part 4: Token-Passing Bus Access Method and Physical Layer
Specifications”.

[7] Jae-Young Lee, Hong-Ju Moon, Sang Yong Moon, Wook Hyun Kwon, Sung Woo Lee,
and Ik Soo Park. “Token-Passing bus access method on the IEEE 802.3 physical layer for
distributed control networks”. Distributed Computer Control Systems 1998 (DCCS'98),
Proceedings volume from the 15th IFAC Workshop. Elsevier Science, Kidlington, UK,
pp. 31-36, 1999.

[8] J. López Campos, J. J. Gutiérrez, and M. González Harbour, “The Chance for Ada to
Support Distribution and Real-Time in Embedded Systems“. 9th Proceedings of the
International Conference on Reliable Software Technologies, Ada-Europe-2004.

[9] K. Tindell, A. Burns, and A.J. Wellings, “Calculating Controller Area Network (CAN)
Message Response Times”. Proceedings of the 1994 IFAC Workshop on Distributed
Computer Control Systems (DCCS), Toledo, Spain, 1994.

[10] M. Aldea and M. González. “MaRTE OS: An Ada Kernel for Real-Time Embedded
Applications”. Proceedings of the International Conference on Reliable Software
Technologies, Ada-Europe-2001, Leuven, Belgium, Lecture Notes in Computer Science,
LNCS 2043, May, 2001

[11] Martínez, J.M. González Harbour, M. and Gutiérrez, J.J. “RT-EP: Real-Time Ethernet
Protocol for Analyzable Distributed Applications on a Minimum Real-Time POSIX
Kernel”. Proceedings of the 2nd International Workshop on Real-Time LANs in the
Internet Age, RTLIA 2003, Porto (Portugal), July 2003.

[12] M. González Harbour, J.J. Gutiérrez, J.C. Palencia and J.M. Drake: “MAST: Modelling
and Analysis Suite for Real-Time Applications”. Proceedings of the Euromicro
Conference on Real-Time Systems, Delft, The Netherlands, June 2001

[13] Object Management Group (OMG). Unified Modeling Language (UML). http://
www.uml.org

[14] Paulo Pedreiras, Luis Almeida, Paolo Gar. “The FTT-Ethernet protocol: Merging
flexibility, timeliness and efficiency”. Proceedings of the 14th Euromicro Conference on
Real-Time Systems, Vienna, Austria, June 2002.

[15] Thomas Vergnaud, Jérome Hugues, Laurent Pautet, and Fabrice Kordon “PolyORB: A
Schizophrenic Middleware to Build Versatile Reliable Distributed Applications”.
Proceedings of the 9th Ada-Europe International Conference on Reliable Software
Technologies, Palma de Mallorca, Spain, June 14-18, 2004, in LNCS 3063, Springer
Varlag.

