
The Implementation of Ada 2005
Interface Types in the GNAT Compiler

Javier Miranda1, Edmond Schonberg2 and Gary Dismukes2

1 jmiranda@iuma.ulpgc.es

Applied Microelectronics Research Institute
University of Las Palmas de Gran Canaria

Spain
2 {schonberg|dismukes}@adacore.com

AdaCore
104 Fifth Avenue, 15th floor

New York, NY 10011

Abstract. One of the most important object-oriented features of the
new revision of the Ada Programming Language is the introduction of
Abstract Interfaces to provide a form of multiple inheritance. Ada 2005
Abstract Interface Types are based on Java interfaces, and as such sup-
port inheritance of operation specifications, rather than the general com-
plexity of inheritance of implementations as in full multiple inheritance.
Real-time uses of Ada demand efficient and bounded worst-case execu-
tion time for interface calls. In addition, modern systems require mixed-
language programming. This paper summarizes part of the work done
by the GNAT Development Team to provide an efficient implementation
of this language feature and simplifies interfacing with C++.

Keywords: Ada 2005, Abstract Interface Types, Tagged Types, GNAT.

1 Introduction

During the design of Ada 95 there was much debate about whether the language
should incorporate multiple inheritance. The outcome of the debate was to sup-
port single inheritance only. In recent years, a number of language designs [6,
8] have adopted a compromise between full multiple inheritance and strict sin-
gle inheritance, which is to allow multiple inheritance of specifications, but only
single inheritance of implementations. Typically this is obtained by means of
“interface” types. An interface consists solely of a set of operation specifications:
the interface type has no data components and no operation implementations.
A type may implement multiple interfaces, but can inherit code from only one
parent type [1]. This model has been found to have much of the power of full-
blown multiple inheritance, without most of the implementation and semantic
difficulties.

During the last year the GNAT Development Team has been working on the
implementation of Ada 2005 features [10]. For the implementation of abstract
interfaces, we have adopted the design policy that the implementation must be
efficient and have a bounded worst-case execution time [7, Section 3.9(1.e)]. In
addition, we desire an implementation that simplifies mixed-language program-
ming, in particular when interfacing Ada with the g++ implementation of C++.

At compile time, an interface type is conceptually a special kind of abstract
tagged type and hence do not add special complexity to the compiler (in fact,
most of the current compiler support for abstract tagged types can be reused).
However, at run time, additional structures must be created to support dynamic
dispatching through interfaces as well as membership tests. This paper concen-
trates on these issues.

The paper has the following structure: In Section 2 we summarize the main
features of Ada 2005 abstract interfaces. In Section 3 we give an overview of the
state of the art for implementing polymorphic calls and we sketch the GNAT
implementation approach. In order to understand the proposed implementa-
tion, the reader needs to be familiar with the existing run-time support for
tagged types. Hence, in Section 4 we summarize the GNAT run-time support for
Ada 95 tagged types. In Section 5 we describe the implementation of abstract
interfaces: Section 5.1 presents two approaches to support dynamic dispatching
through interfaces, Section 5.2 presents the new layout adopted by GNAT that
is compatible with the C++ Application Binary Interface in order to simplify
the interfacing of Ada 2005 with C++, and Section 5.3 describes the run-time
support for the membership test applied to interfaces. We close with some con-
clusions and the bibliography.

2 Abstract Interfaces in Ada 2005

An Ada 2005 interface type consists solely of a type declaration together with a
set of operation specifications: the interface type has no data components and no
implementation of operations. The specifications may be either abstract or null
by default. A type may implement multiple interfaces, but can inherit operation
implementations from only one parent type [1]. For example:

package Pkg i s
type I1 i s interface ; −− 1
procedure P (A : I1) i s abstract ;
procedure Q (X : I1) i s null ;

type I2 i s interface and I1 ; −− 2
procedure R (X : I2) i s abstract ;

type Root i s tagged record . . . −− 3

type DT1 i s new Root and I2 with . . . −− 4
−− DT1 must prov ide implementat ions f o r P and R

. . .

type DT2 i s new DT1 with . . . −− 5
−− I n h e r i t s a l l t he p r im i t i v e s and i n t e r f a c e s o f
−− the ances tor
. . .

end Pkg ;

The interface I1 defined at –1– has two subprograms: the abstract subpro-
gram P and the null subprogram Q (null procedures are introduced by AI-348 [2];
they behave as if their body consists solely of a null statement). The interface I2
defined at –2– has the same operations as I1, plus operation R. At –3– we define
the root of a derivation class. At –4–, DT1 extends the root type, with the added
commitment of implementing all the subprograms of interface I2. Finally, at –5–
type DT2 extends DT1, inheriting all the primitive operations and interfaces of
its ancestor.

The power of multiple inheritance is realized by the ability to dispatch calls
through interface subprograms, using a controlling argument of a class-wide in-
terface type. In addition, languages providing interfaces [6, 8] also have a mech-
anism to determine at run time whether a given object implements a particular
interface. For this purpose Ada 2005 extends the membership operation to inter-
faces so that the programmer can write O in I’Class. Let us look at an example
that uses both features:

procedure Dispatch Ca l l (Obj : I1 ’ Class) i s
begin

i f Obj in I2 ’ Class then −− 1 : Membership t e s t
R (I2 ’ Class (Obj)) ; −− 2 : Dispa tch ing c a l l

else
P (Obj) ; −− 3 : Dispa tch ing c a l l

end i f ;

I1 ’ Write (Stream , Obj) −− 4 : Dispa tch ing c a l l to
−− prede f ined opera t ion

end Dispatch Ca l l ;

The type of the formal Obj covers all the types that implement the interface
I1, and hence at –3– the subprogram can safely dispatch the call to P . However,
because I2 is an extension of I1, an object implementing I1 might also implement
I2. Therefore at –1– we use the membership test to check at run-time whether the
object also implements I2, and then call subprogram R instead of P (applying
a conversion to the descendant interface type I2). Finally, at –4– we see that,
in addition to user-defined primitives, we can also dispatch calls to predefined
operations (that is, ’Size, ’Alignment, ’Read, ’Write, ’Input, ’Output, Adjust,
Finalize, and the equality operator.

In the next section we briefly present the state of the art in the implementa-
tion of multiple inheritance and interfaces, and we sketch the approach followed
in GNAT.

3 Implementation Strategies for Interfaces

Compiler techniques for implementing polymorphic calls can be grouped into
two major categories [5]: Static Techniques, which involve precomputing all data
structures at compile or link time and do not change those data during run
time, and Dynamic Techniques, where some information may be precomputed
at compile or link time, but which may involve updating the information and
the corresponding data structures at run time. For efficiency reasons, the GNAT
implementation uses only static techniques.

The static techniques for implementing polymorphic calls are: Selector Table
Indexing, Selective Coloring, Row Displacement, Compact Selector-Index Dis-
patch Tables, and Virtual Function Tables. The Selector Table Indexing scheme
(STI) uses a two-dimensional matrix indexed by class and selector codes (where
a selector code denotes a concrete primitive operation). Both classes and se-
lectors are represented by unique, consecutive integer encodings. Unfortunately,
the resulting dispatch table is too large and very sparse, and thus this scheme is
generally not implemented as described. Selective Coloring, Row Displacement,
and Compact Selector-Index Dispatch Tables are variants of STI that reduce the
size of the table.

The approach of Virtual Function Tables (VTBL) is the preferred mechanism
for virtual function call resolution in Java and C++. The VTBL is a table
containing pointers to the primitive operations of a class. Instead of assigning
selector codes globally, VTBL assigns codes only within the scope of a class. In
Java the implementation typically stores the VTBL in an array reachable from
the class object, and searchs by name and profile for the relevant table entry at
run time. Most Java compilers augment the basic search approach of the VTBL
with some form of cache or move-to-front algorithm to exploit temporal locality
in the table usage to reduce expected search times [3].

[3] also proposes a new interface-dispatch mechanism called the Interface
Method Table. IMT is supported by Jalapeño, a virtual machine for Java servers
written in Java at the IBM Research Group. The authors remark that their
method is efficient in both time and space. The key idea is to convert the “Selec-
tor Index Tables” method into a hash table that assigns a fixed-sized Interface
Method Table to each class that implements an interface. This approach handles
collisions by means of custom-generated conflict resolution stubs (that is, sub-
programs with a “case” statement to determine which of the several signatures
that share this slot is the desired target). These stubs are built incrementally
as the program runs, and hence this technique is not considered appropriate for
GNAT.

Two variants of the Virtual Function Tables (VTBL) approach have been
considered for implementing dispatching calls for abstract interfaces in GNAT:
1) Permutation Maps, and 2) Multiple Dispatch Tables. In the former approach,
each tagged type has one dispatch table plus one supplementary table per in-
terface containing indices into the dispatch table; each index establishes the
correspondence between the interface subprograms and the tagged type sub-

programs (permutation maps are discussed in [1]). Multiple Dispatch Tables,
which are standard for C++ implementations, involves the generation of a dis-
patch table for each implemented interface. A dispatching call with an interface
controlling argument locates the dispatch table corresponding to the interface
(using an interface tag within the controlling argument), and then performs the
usual indirect call through the appropriate entry in that table. Thus, dispatching
a call through an interface has the same cost as any other dispatching call. We
have written prototype implementations of both approaches. Although the sec-
ond approach uses significantly more space for the tagged type than is required
by permutation maps and adds complexity to the compiler, it has two major
benefits: 1) Constant-time dispatching through interfaces, and 2) Simplified in-
terfacing with C++ abstract classes and pure virtual functions. Because these
two benefits are important for the Ada community, this latter approach has been
selected for GNAT (further details are given in Section 5.1).

Concerning interface membership tests, [11] and [12] discuss several tech-
niques that can be used to implement type-inclusion tests in constant time,
independently of the number of interfaces implemented by a given type: packed
encoding, bit-packed encoding and compact encoding. The former is the most effi-
cient, and the latter two are more compact. Because these techniques introduce
additional complexity and data structures to the run-time, we decided to evalu-
ate their appropriateness for GNAT. For this purpose we examined the current
usage of interfaces in Java, and we selected the sources available with the Java
2 Platform, Standard Edition (J2SE 5.0) [9]. Figure 1 summarizes the results:
from a total of 2746 Java classes, 99.3 percent implement a maximum of four
interfaces, and there is a single class (AWTEventMulticaster) that implements 17
interfaces. Because of these results, and also because constant-time is not really
required for the interface membership test —worst-case time-cost is enough—,
we have decided to implement the interface membership test in GNAT using
an additional data structure: a compact table containing the tags of all the
implemented interfaces (the structure of this table will be discussed in Section
5.3). Hence, the cost of the interface membership test is the cost of a search for
the interface in this table, and is proportional to the number of implemented
interfaces.

Number of Implemented Interfaces

Number of Java Classes

 0 1 2 3 4 5 6 7 8 17

22 1998 508 160 40 6 7 2 2 1

Fig. 1. Usage of interfaces in J2SE 5.0

Before we discuss the details of the implementation of abstract interfaces in
GNAT, the reader needs to be familiar with the GNAT run-time support for
tagged types. This is summarized in the next section.

4 Tagged Types in GNAT

In the GNAT run-time, the Tag component of an object is a pointer to a struc-
ture that, among other things, holds the Dispatch Table and the Ancestors Table
(cf. Figure 2). The Dispatch Table contains the pointers to the primitive op-
erations of the type. The Ancestors Table contains the tags of all the ancestor
types; it is used to compute class-wide membership tests in constant time. For
further information on the other fields, see the comments in the GNAT sources
(files a-tags.ads and a-tags.adb).

T’Tag

Dispatch
 Table

Inheritance Depth

Ancestors
 Table

TSD Ptr

Type Specific Data

Expanded Name

External Tag

Hash Table Link

Remotely Callable

Rec Ctrler Offset

Object

User
Data

Run-Time Information associated
with a tagged type

Fig. 2. Run-time data structure for tagged types

Let us briefly summarize the elaboration of this structure with the help of
Figure 3. On the right side, the reader can see a tagged type T with two primitive
operations P and Q. On the left side of the same figure we have a simplified
version of the structure described above. For clarity, only the dispatch table,
the table of ancestor tags, and the inheritance level are shown. The elaboration
of a root tagged type declaration carries out the following actions: 1) Initialize
the Dispatch Table with the pointers to the primitive operations, 2) Set the
inheritance level I-Depth to one, and 3) Initialize the table of ancestor tags with
the self tag.

For derived types, GNAT does not build the new run-time structure from
scratch, but starts by copying the contents of the ancestor tables. Figure 4 ex-
tends our previous example with a derived type DT . The elaboration of the
tables corresponding to DT involves the following actions: 1) Copy the contents
of the dispatch table of the ancestor, 2) Fill in the contents of the new dispatch

P’Address
Q’Address

T’Tag

I-Depth = 1

type T is tagged null record;
procedure P (X : T) is
begin
 . . .
end P;

procedure Q (X : T) is
begin
 . . .
end Q;

Dispatch
 Table

Ancestors
 Table

(1)

(2)

(3)

T’Tag

Object

User
Data

Fig. 3. Elaboration of a root tagged type

table with the pointers to the overriding subprograms (as well as any new prim-
itive operations), 3) Increment the inheritance level to one plus the inheritance
level of the ancestor, 4) Copy the contents of the ancestor tags table in a stack-
like manner (that is, copy the 0 to i elements of the ancestor tags table into
positions 1 to i + 1 and save the self tag at position 0 of this table. Thus the
self tag is always found at position 0, the tag of the parent is found at position
1, and so on. Knowing the level of inheritance of two types, the membership
test O in T’Class can be computed in constant time by means of the formula:
O′Tag.Ancestors Table(O′Tag.Idepth− T ′Tag.Idepth) = T ′Tag

P’Address
Q’Address
R’Address

P’Address
Q’Address

T’Tag

I-Depth = 1

type T is tagged null record;
procedure P (X : T) is
begin
 . . .
end P;

procedure Q (X : T) is
begin
 . . .
end Q;

type DT is new T with . . .
procedure Q (X : DT) is
begin
 . . .
end Q;

procedure R (X : DT) is
begin
 . . .
end R;

DT’Tag
 T’Tag

I-Depth = 2

Dispatch
 Table

Ancestors
 Table

Ancestors
 Table

(1)

(2)

(4)

(3)

Dispatch
 Table

T’Tag

Object-1

User
Data

DT’Tag

Object-2

User
Data

Fig. 4. Elaboration of a derived type

In addition to the user-defined primitive operations, the dispatch table con-
tains the pointers to all the predefined operations of the tagged type (that is,
’Size, ’Alignment, ’Read, ’Write, ’Input, ’Output, Adjust, Finalize, and the equal-
ity operator).

5 Abstract Interfaces in GNAT

As we explained in Section 2, at run time the implementation of abstract in-
terfaces involves support for two main features: 1) Dispatching calls through
interfaces, and 2) Membership Tests applied to interfaces. In the following sec-
tions we describe the GNAT implementation of these features.

5.1 Dispatching calls through Abstract Interfaces

Two variants of the Virtual Function Tables (VTBL) approach presented in
Section 3 for implementing dispatching calls through abstract interfaces were
evaluated in GNAT (cf. Figure 5): 1) Permutation Maps, and 2) Multiple Dis-
patch Tables. In the former approach, each tagged type has one dispatch table
plus, for each implemented interface, one supplementary table containing indices
into the dispatch table; each index establishes the correspondence between an
interface subprogram and the tagged type’s implementation of that subprogram
(permutation maps are discussed in [1]). The latter approach involves the gen-
eration of a dispatch table for each implemented interface. Thus, dispatching a
call through an interface has the same cost as any other dispatching call.

type T is new I1 and I2 with . . . ;

 procedure P (X : T) is . . .
 procedure Q (X : T) is . . .
 procedure R (X : T) is . . .

type I1 is interface;
procedure P (X : I1);

type I2 is interface;
procedure Q (X : I2);
procedure R (X : I2);

T’Tag
P’Address
Q’Address
R’Address

Dispatch Table

P’Address

Dispatch Table of I1

Q’Address
R’Address

Dispatch Table of I2

b) Multiple Dispatch Tables

T’Tag

P’Address
Q’Address
R’Address

Dispatch Table

P

Permutation Map of I1

Q
R

Permutation Map of I2

a) Permutation Maps

Fig. 5. Permutation Maps versus Multiple Dispatch Tables

The implementation of the permutation map approach is simpler than the
implementation of multiple dispatch tables because the indices in the permuta-

tion maps never change, so they can simply be inherited directly by any descen-
dant types. By contrast, although multiple dispatch tables require significantly
more space and are more complex to implement (because the compiler must take
care of generating additional code to create and elaborate these additional dis-
patch tables), it has two major benefits: 1) Constant-time dispatching through
interfaces, and 2) Easier interfacing with C++. The first benefit is crucial for
a real-time language like Ada, and the second benefit is important for the Ada
community in general because it allows interfacing with C++ abstract classes
and pure virtual functions. Hence, GNAT implements interfaces by means of
multiple dispatch tables.

5.2 C++ ABI Layout Compatibility

In order to have true compatibility with C++ we have modified the layout of
tagged objects as well as the run-time data structure associated with tagged
types to follow the C++ Application Binary Interface (ABI) described in [4].
Figure 6 presents an example with the new layout: at the top of this figure we
have the layout of an object of a tagged type. Compared with the previous GNAT
layout, the main difference is found in the run-time structure: the dispatch table
has a header containing the offset to the top and the Run-Time Type Information
Pointer (RTTI). For a primary dispatch table, the first field is always set to 0 and
the RTTI pointer points to the GNAT Type Specific Data structure described
in Section 4. In addition, the tag of the object points to the table of pointers to
primitive operations that is available after the header.

At the bottom of Figure 6 we have the layout of a derived type that imple-
ments the interfaces I1 and I2. When a type implements several interfaces, its
run-time data structure contains one primary dispatch table and one secondary
dispatch table per interface. Regarding the layout of the object (left side of the
figure), the derived object contains all the components of its immediate ancestor
followed by 1) the tag of all the implemented interfaces, and 2) its additional
user-defined components. Regarding the contents of the dispatch tables, the pri-
mary dispatch table is an extension of the primary dispatch table of its immediate
ancestor, and thus contains direct pointers to all the primitive subprograms of
the derived type. The offset to top component of the secondary tables holds the
displacement to the top of the object from the object component containing the
interface tag. (This offset provides a way to find the top of the object from any
derived object that contains secondary virtual tables and is necessary in C++
for dynamic cast.)

In the example shown in Figure 6, the offset of the tag corresponding to the
interfaces I1 and I2 are m and n respectively. In addition, rather than containing
direct pointers to the primitive operations associated with the interfaces, the
secondary dispatch tables contain pointers to small fragments of code called
thunks. These thunks are used to adjust the pointer to the base of the object. To
better understand its behavior, we consider an example of the use of the above

package Some_Interfaces is
 type I1 is interface;
 procedure P (X : I1);

 type I2 is interface;
 procedure Q (X : I2);
 procedure R (X : I2);
end Some_Interfaces;

A’Address
B’Address

Primary Dispatch Table

Offset_To_Top = 0
 RTTI Pointer

T’Tag

T Object

T Components

package Root is
 type T is tagged record with
 -- T components
 . . .
 end record;
 procedure A (X : T) is . . .
 function B (X : T) return Integer is . . .
end Root;

with Root; use Root;
with Some_Interfaces; use Some_Interfaces;
package Derivation is
 type DT is new T and I1 and I2 with
 -- DT Components
 . . .
 end record;

 procedure P (X : T) is . . .
 procedure Q (X : T) is . . .
 procedure R (X : T) is . . .

end Derivation;

A’Address
B’Address
P’Address
Q’Address
R’Address

Primary Dispatch Table

P’Address

Secondary Table of I1

Q’Address
R’Address

Secondary Table of I2

Offset_To_Top = 0
 RTTI Pointer

Offset_To_Top = -m
 RTTI Pointer

Offset_To_Top = -n
 RTTI Pointer

DT’Tag

DT Object

T Components

I1’Tag
I2’Tag

DT Components

n

m

Thunk of I1.P

Thunk of I2.Q

Thunk of I2.R

Fig. 6. Layout compatibility with C++

run-time data structure and analyze the full execution sequence of the following
code that issues a dispatching call to the subprogram R of the interface I2.

with Der ivat ion ; use Der ivat ion ;
with Some Inte r f ace s ; use Some Inte r f ace s ;
procedure Test i s

procedure Class Wide Cal l (Obj : I2 ’ Class) i s
−− 3 : The po in t e r to the o b j e c t r e c e i v ed in the
−− ac t ua l parameter i s in f a c t a d i s p l a c e d
−− po in t e r t ha t po in t s to the I2 ’ Tag
−− component or the o b j e c t (see Figure 6)

begin
−− 4 : Dispatch c a l l to the thunk through the
−− secondary d i s pa t ch t a b l e a s s o c i a t e d wi th
−− the i n t e r f a c e I2
R (Obj) ;

end Class Wide Cal l ;

O1 : DT; −− 1 : Object d e c l a r a t i on
begin

Class Wide Cal l (O1) ; −− 2 : Disp lace the po in t e r to
−− the base o f the o b j e c t
−− by n by t e s

end Test ;

At –1– we declare an object that has the layout described in Figure 6. At
–2– we have a call to a subprogram with a class-wide interface formal, and the
compiler generates code that displaces the pointer to the base of the object
by n bytes to point to the object component containing the I2’Tag (cf. Figure
6). This adjusted address is passed as the pointer to the actual object in the
call to Class Wide Call. Inside this subprogram (at –3–), all dispatching calls
through interfaces are handled as if they were normal dispatching calls. For
example, because R is the second primitive operation of the interface I2, at –4–
the compiler generates code that issues a call to the subprogram identified by the
second entry of the primary dispatch table associated with the actual parameter.
Because the actual parameter is a displaced pointer that points to the I2’Tag
component of the object, we are really issuing a call through the secondary table
of the object associated with the interface I2. Rather than a direct pointer to
the R subprogram, the compiler has generated code that fills this entry of the
interface dispatch table with the address of the thunk that 1) subtracts the m
byte displacement corresponding to I2 in order to adjust the address so that it
refers to the real base of the object, and 2) jumps to the primitive subprogram
R.

5.3 Interface Membership Test: O in I’Class

In analogy with the Ada 95 membership test applied to class-wide types (de-
scribed in Section 4), at run time we have a compact table containing the tags
of all the implemented interfaces (cf. Figure 7). The reasons behind the selection
of this simple structure were previously discussed in Section 3. The run-time
cost of the membership test applied to interfaces is the cost of a search for the
interface in this table.

 Table of
primitive
operation
 pointers

Inheritance Depth

Ancestor Tags

TSD Ptr

Type Specific Data

Expanded Name

External Tag

Hash Table Link

Remotely Callable

Rec Ctrler Offset

Interface Tags

T’Tag

Object

User
Data

Fig. 7. The Table of Interfaces

This simple approach has the advantage that the elaboration of derived types
implementing interfaces is simple and efficient. In analogy with the elaboration
of the Ancestors Table (described in Section 4), we elaborate the new table of
interfaces as follows: 1) Copy the contents of the table of interfaces of the imme-
diate ancestor (because the derived type inherits all the interfaces implemented
by its immediate ancestor), and 2) Add the tags of any new interfaces.

6 Conclusions

This paper summarizes part of the work done by the GNAT Development Team
to implement Ada 2005 abstract interface types. Because interfaces are con-
ceptually a special kind of abstract tagged type, at compile time most of the
current support for abstract tagged types has been reused. At run time, addi-
tional structures were required to give support to membership tests as well as
dynamic dispatching through interfaces.

We developed two prototype implementations of abstract interfaces. The first
implementation uses a combination of a dispatch table for the primitive opera-
tions of a tagged type, and permutation maps that establish how a given interface
is mapped onto that type’s primitive operations. Although the implementation
of this model was rather simple and correctly supports the Ada 2005 semantics,
in order to have constant time in dispatching calls through interfaces, and also
simplify the interfacing of Ada 2005 with C++ (at least for the g++ compiler),
we developed an alternative prototype that is more complex and uses separate
dispatch tables for all the implemented interfaces. Because of these important
benefits for the Ada community, this second approach has been selected as the
final version supported by GNAT.

Acknowledgments

We wish to thank Cyrille Comar and Matt Heaney for the discussions that
helped us to clarify the main concepts described in this paper. We also wish to
thank Arnaud Charlet, Geert Bosch, Robert Dewar, Paul Hilfinger, and Richard
Kenner for helping us to clarify details of the underlying technology. Finally, we
also wish to thank the dedicated and enthusiastic members of AdaCore, and the
myriad supportive users of GNAT whose suggestions keep improving the system.

References

1. Ada Rapporteur Group (ARG). Abstract interfaces to provide multiple inheritance.
Ada Issue 251, http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00251.TXT.

2. Ada Rapporteur Group (ARG). Null procedures. Ada Issue 348, http://www.ada-
auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00348.TXT.

3. B. Alpern, A. Cocchi, S. Fink, D. Grove, and D. Lieber. Efficient
Implementation of Java Interfaces: Invokeinterface Considered Harm-
less. Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2001), ACM Press.
http://www.research.ibm.com/jalapeno/publication.html, October 2001.

4. CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red Hat, and SGI. Itanium C++
ABI. Technical Report Revision 1.75, www.codesourcery.com.prev/cxx-abi, 2004.

5. K. Driesen. Software and Hardware Techniques for Efficient Polymorphic Calls.
University of California, Santa Barbara (PhD Dissertation), TRCS99-24, June
1999.

6. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification
(2nd edition). Addison-Wesley, 2000.

7. Intermetrics Inc and the MITRE Corporation. Annotated Ada Reference Man-
ual with Technical Corrigendum 1. Language Standard and Libraries. ISO/IEC
8652:1995(E). http://www.ada-auth.org/arm-files/AARM.PDF, 2000.

8. ECMA International. C# Language Specification —Standard ECMA-334 (2nd
edition). Standardizing Information and Communication Systems, December, 2002.

9. Sun MicroSystems. Java 2 Platform, Standard Edition (J2SE 5.0). Available at
http://java.sun.com/j2se/, 2004.

10. J. Miranda and E. Schonberg. GNAT: On the Road to Ada 2005. ACM SigAda
2004, November 2004.

11. K. Palacz and J. Vitek. Java Subtype Tests in Real-Time. Pro-
ceedings of the European Conference on Object-Oriented Programming,
http://citeseer.ist.psu.edu/660723.html, 2003.

12. J. Vitek, R.N Horspoo, and A. Krall. Efficient Type Inclusion
Tests. Proceedings of the Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 97), ACM Press.
http://citeseer.ist.psu.edu/vitek97efficient.html, 1997.

