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Abstract. In [8], Paterson and Yau presented padding oracle attacks
against a committee draft version of a revision of the ISO CBC-mode
encryption standard [3]. Some of the attacks in [8] require knowledge
and manipulation of the initialisation vector (IV). The latest draft of the
revision of the standard [4] recommends the use of IVs that are secret and
random. This obviates most of the attacks of [§]. In this paper we consider
the security of CBC-mode encryption against padding oracle attacks in
this secret, random IV setting. We present new attacks showing that
several ISO padding methods are still weak in this situation.
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1 Introduction

Vaudenay [9] introduced the notion of padding oracle attacks on CBC-mode en-
cryption. His work showed that several uses of CBC-mode encryption in well-
known products and standards are potentially vulnerable to attack whenever the
attacker can submit ciphertexts for decryption and has access to a side-channel
which tells him only whether or not the corresponding plaintext is correctly padded.
Canvel et al. [7] applied and extended the ideas of [9] to show that a particular im-
plementation of SSL used to protect e-mail passwords could be attacked and the
passwords extracted. Further padding methods were examined in [6].

In [8], Paterson and Yau examined the security of the ISO standard for CBC-
mode encryption with respect to padding oracle attacks. The draft revision of the
standard [3] analyzed in [8] proposes the use of padding methods from ISO/TEC
9797-1 [1] and ISO/IEC 10118-1 [2]. Paterson and Yau showed that several of
these padding methods, when used with CBC-mode encryption, are vulnerable
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to padding oracle attackdl. The work of [8] highlights the dangers of “cutting-
and-pasting” methods from one set of standards into another.

Partly as a consequence of the work of [8], a later draft of the revised ISO
standard [4] omits all mention of padding methods. Additionally, it recommends
that “integrity-protected secret” and “randomly chosen statistically unique” IVs
be used. The motivation for using secret IVs given in [4] is “to prevent informa-
tion leakage”. The recommendation for random IVs is in-line with the formal
security analysis of [5] which shows (in a sense that can be made precise) that
CBC-mode is secure provided that the underlying block cipher is strong and that
the IV is random. We also note that [4] allows the use of multiple IVs (called
starting variables, or SVs in [4]) and interleaving of multiple cipher block chains;
this allows for parallelism in encryption. We expect that in most applications, a
single IV will be used, and this is the situation we focus on here.

The attack model in [8] assumes that the IV can be chosen by the attacker and
is submitted to the padding oracle along with the ciphertext. To be successful,
most of the attacks in [8] do in fact require the attacker to have knowledge of the
IV and the ability to manipulate it. For this reason, the attacks in [8] would not
apply to CBC-mode as defined in [4] if the padding methods of [1] and [2] were
used and if the new recommendations to use secret, random IVs were followed.
More specifically, the only attack in [8] that remains practicable is Attack 2
against padding method 3 of [2]. This attack on its own arguably has a small
impact on the confidentiality of data because it works only against the last one
or two blocks of a target ciphertext and recovers relatively few useful data bits.

Despite their omission from the draft ISO standard [4], padding methods are
needed in order to fully specify the CBC-mode of operation. It is not unreason-
able to assume that, in the absence of any other guidance, an implementer of
CBC-mode according to [4] might borrow techniques from other ISO standards,
as was indeed proposed in [3]. Here, we demonstrate that padding oracle attacks
can still be effective against CBC-mode encryption even when IVs are secret and
random. In particular, we show that several padding methods from [I}[2] are still
weak even in this situation.

1.1 Attack Models

Before giving details of our attacks, we clarify the attack models under which
these attacks will take place.

When IVs are secret and random, a variety of practical methods could be
used to ensure the IVs are available to both encrypting and decrypting parties.
For example, the IV could be encrypted using ECB-mode and prefixed to the
ciphertext. Alternatively, a value V' could be prefixed to the ciphertext and the
IV generated by encrypting V' using ECB mode. Or, as a third possibility, a pre-

! In fact, [8] claims padding oracle attacks against the second edition of ISO/IEC
10116, though this edition of the standard makes no mention of padding methods.
Padding methods did not appear in draft revisions of the standard until the com-
mittee draft stage in the proposed 3rd edition of ISO/IEC 10116.
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agreed list of IVs could be used and an index sent with ciphertexts to indicate
which entry in the list was used as the IV. Because these approaches include
information determining I'Vs along with ciphertexts, they allow the adversary to
influence which IV is used by the padding oracle when decrypting, without the
adversary necessarily knowing the actual value of the IV. In particular, they allow
the adversary to force the oracle to re-use an old IV. We can model this kind of
attack by assuming that, when submitting a ciphertext to the padding oracle,
the attacker specifies an additional string I which in some way determines the
IV used by the padding oracle. The contents of I will depend on the particular
method used for establishing I'Vs: for example, in the case of encrypted IVs, I
will simply be the encrypted IV, while in the case of a pre-established list,
would be an index in the list.

We expect that the above kind of approach for establishing secret, random
IVs is most likely to be used in practice. But it is also conceivable that a second
approach, in which no information at all about the IV is transmitted as part
of ciphertexts, might be used. For example, the communicating parties may be
able to maintain a synchronised counter and then obtain IVs by applying a
keyed pseudo-random function to the counter. We also want to model attacks in
this scenario, which presents a tougher attack environment to the adversary. We
can do this by assuming that the padding oracle simply selects a fresh, random
IV before every decryption and that no IV-related information is included in
ciphertexts.

Thus in this paper, we will consider two slightly different attack models. In
the first model, IVs are secret and random but are determined by additional in-
formation I available to the attacker and submitted to the oracle. In the second
model, IVs are secret and random and the attacker has no control over the IV used
by the padding oracle. Obviously, attacks in the second model are more powerful,
but attacks in the first model already capture many likely practical situations.

1.2 Our Results

In Section B2l we introduce a new padding oracle attack against CBC-mode
when used with padding method 3 of [I]. Our new attack applies for secret,
random IVs in the first attack model. The new attack uses a set of auxiliary
ciphertexts corresponding to plaintexts of different lengths as an aid to recovering
the plaintext corresponding to a target ciphertext block. The complexity of the
attack depends on the spread of lengths of the auxiliary ciphertexts; it can be
as low as n queries to the padding oracle, where n is the block size.

We have been able to adapt the attacks of [8] against CBC-mode when used
with padding method 3 of [2] to the secret and random IV setting without
significant penalties on complexity or generality. These attacks are applicable
in our second, tougher attack scenario. An attack applicable to any ciphertext
block is presented in Section This attack first constructs a valid ciphertext
with the target block as the final block and then uses the attack of Section
to decrypt that block. The first phase requires, on average, roughly 27! calls to
the padding oracle. Here r is a parameter associated with the padding method.
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The attack of Section 3] is applicable to the final block of any ciphertext and
is always efficient, requiring only O(n) oracle queries to recover all the plaintext
bits in the last block.

We note that our results do not contradict the results of [5], since the secu-
rity model of [5] does not cater for the kind of side-channel information that a
padding oracle provides to an attacker. We also note that all of our attacks are
independent of the particular block cipher used.

Our attacks can be further developed to handle the situation where multiple
IVs are in use. Again, we can obtain attacks against method 3 of [I] for multiple
secret, random IVs in the first attack model. We can also find attacks against
method 3 of [2] for multiple secret, random IVs in the second attack model.
Since the modifications to our existing attacks are quite straightforward, we do
not include the details in this paper. Nor have we analyzed the other padding
methods from [Il2] in the secret and random IV setting. Padding method 1
in both standards does not de-pad uniquely and is only useful when plaintexts
have fixed or known lengths. We expect that padding oracle attacks may be
possible against this method. As was noted in [6,[8], padding method 2 in the
two standards seems to be largely immune to such a side-channel analysis and
indeed makes a good candidate for recommendation as a padding method in the
ISO standard for CBC-mode encryption.

2 Symbols and Notation

We largely use the same notation as in [8], with only one major difference. In [§],
the first block of the ciphertext Cy submitted to the padding oracle was taken
to be the IV. Here, the attacker no longer submits the IV (since he does not
know it), but he may or may not submit additional information I, depending on
whether the attack is in the first or second attack model. Therefore in our new
notation, the first block of the ciphertext will be the first encrypted block Cf,
and, in making padding oracle queries, we will prepend additional information
I to ciphertexts whenever appropriate. The context will make clear when this is
being done.

For a detailed description of CBC-mode encryption, see [8-Section 2.2]. We
summarise our other frequently used notation here for ease of reference.

C : ciphertext output after CBC-mode encryption; target ciphertext the at-
tacker is trying to decrypt.

C' : ciphertext to be submitted to the padding oracle during an attack.

di (Y) : decryption of ciphertext block Y under key K.

D : unpadded data string to be CBC-mode encrypted.

ek (X) : encryption of plaintext block X under key K.

I : information determining the IV in our first attack model.

IV : the initialisation vector used in CBC-mode.

Lp : the length (in bits) of the data string D.

n : the block size (in bits) of the block cipher.



Padding Oracle Attacks on CBC-Mode Encryption 303

P : the result of applying a given padding method to D.

q : the number of blocks in data string P after padding.

VALID and INVALID: padding oracle responses to, respectively, correct and in-
correct padding after receipt and decryption of ciphertext.

X||Y : the result of concatenation of strings X and Y.

X @Y : the result of exclusive-or (XOR) of strings X and Y.

(X)2 : the binary representation of the value X.

X : the j' block of the plaintext or ciphertext X (1 < j < q).

X1 ¢ the k' bit of the plaintext or ciphertext block X;, 0 <k < n.

3 Analysis of Padding Method 3 of ISO/IEC 9797-1

3.1 Review of Padding Method and Previous Attack
We reproduce the original text of the padding method from [I]:

“The data string D to be input to the [...] algorithm shall be right-
padded with as few (possibly none) ‘0’ bits as necessary to obtain a
data string whose length (in bits) is a positive integer multiple of n. The
resulting string shall then be left-padded with a block L. The block L
consists of the binary representation of the length (in bits) Lp of the
unpadded data string D, left-padded with as few (possibly none) ‘0’ bits
as necessary to obtain an n-bit block. The right-most bit of the block
L corresponds to the least significant bit of the binary representation of
Lp.”

The attack in [8-Section 3.4] decrypts, one block at a time, arbitrary cipher-
texts C1]|C2]| .. . ||C, that are padded using the above method. The attack makes
repeated use of a padding oracle and has two phases.

The general case of the first phase applies to ciphertexts consisting of three
or more blocks and was presented as Algorithm 9797-1-m3-get-Lp-general in
[8]. The algorithm, when given a ¢-block valid ciphertext as input, finds Lp by
manipulating the padding bits. The procedure requires the re-use of old IVs.
Since we will use it in our new attack, we reproduce this algorithm here as
Algorithm [T] with notation modified to reflect the use of additional information
I to determine IVs. In the algorithm (which, in common with all the algorithms
presented here, can be found in the Appendix), I denotes the IV-determining
information that accompanied the target ciphertext.

The special case of the first phase applies to two-block ciphertexts and was
presented as Algorithm 9797-1-m3-get-Lp-special in [§]. This algorithm does
require the ability to directly manipulate bits in the IV and so does not apply
in either of our attack models.

The second phase of the attack on Method 3 of ISO/IEC 9797-1 in [8-Section
3.4] is the actual decryption. Algorithm 9797-1-m3-decrypt in [§] returns the
rightmost n — 1 bits of a plaintext block but in so doing makes repeated updates
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to the IV. It is therefore unusable in our attack models. Algorithm 9797-1-m3-
decrypt-last-bit in [§] returns the leftmost bit of a plaintext block. It is also
unusable, since it requires a customised setting of the IV and a successful run of
Algorithm 9797-1-m3-decrypt.

3.2 An Attack with Secret and Random IVs

We require some further mild assumptions in order to obtain an attack against
padding method 3 of [I] with secret and random IVs. The attack is in our first
attack model. We assume that, in addition to having a target ciphertext C
which he wishes to decrypt, the attacker has also gathered a set of m auxiliary
ciphertexts labelled C', C2, ..., C™, and associated IV-determining information
I', ..., I™. We write g; for the number of blocks in ciphertext CV and require that
g; > 3 for each j. The attacker can immediately use Algorithm[L]and the padding
oracle to find the length L; of each ciphertext C?. We write F; = L; mod n. We
require that the F; be distinct and that no F} is equal to zero. Without loss of
generality, we can then write 1 < I} < Fp, < ... < F,, < n — 1. We also set
Fm+1 =n.

Notice that auxiliary ciphertexts with the required properties can easily be
selected from a larger pool of ciphertexts. The auxiliary ciphertexts are not
themselves decrypted in the course of the attack (though they can individually
be used as target ciphertexts if their decryption is desired).

Our attack is presented in Algorithm 2] and described in words below.

The attack attempts to recover the plaintext block P, matching the block Cj, of
the g-block ciphertext C. In fact, we are only able to extract the rightmost n — Fj
bits of Py for each k > 2. The attack attempts to construct, for decreasing values
of j, a valid g;-block ciphertext whose last block is the target block Cj, and whose
first block is C’j Because of the padding rule, such a ciphertext must correspond
to a plaintext in which the last block Pé consists entirely of ‘0’s in the rightmost
n — Fj positions. By carefully controlhng the values in the penultimate ciphertext
block, we can ensure that only a relatively small number of trials is needed in order
to achieve this for each successive value of j. Eventually, when j = 1, we have a
ciphertext with last block Cy where the matching plaintext block P;, has ‘0’s in
the rightmost n— F} positions. From this information and Cj,_1 it is easy to recover
the rightmost n — F} positions of the original plaintext block P.

We now explain in more detail the operation of the attack. We begin by
considering the rightmost n — F},, positions. Consider submitting to the padding
oracle a ciphertext of the form:

™, C7|00...0]...]]00...0]|S||Ck

qm —3 blocks

where S is a block taking on a random value in the rightmost n — F,, positions.
Because I determines the original IV used in obtaining C", block CT" indicates
that n — F},, ‘0’ padding bits should be found in the last plamtext block, and
hence the oracle will return VALID with a probability of 2/=~". An INVALID
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response indicates that another value of S should be tested. In the algorithm we
simply use an increasing (n — F,,)-bit counter for this purpose. After an average
of around 2"~ F»~! and at most 27~ trials, we will obtain a VALID response.
In this case, we learn that S @ dx (C}) is equal to ‘0’ in the rightmost n — F,,
positions.

Notice that from this information and knowledge of C%_1, we could imme-
diately recover the rightmost n — F,,, bits of Px. However, we now preserve the
successful value of S by setting R = S, and proceed to examine the rightmost
n — F,,_1 bits. Now consider submitting to the padding oracle a ciphertext of
the form:

™=t c7=100...0]|...]|00...0]|S]|Ck

gm—1—3 blocks

where now S is a block taking on a random (F;, — F),,—1)-bit value in positions
Fo_1,Fpn_1+1,...,F,—1, and equalling R in the rightmost n — F},, positions.
Now block C’{”_l indicates that n — F,,_; ‘0’ padding bits should be found
in the last plaintext block. By using R to set the rightmost n — F,, bits of
S, we have already arranged ‘0’ bits in the rightmost n — F;,, positions of the
last plaintext block. So the oracle returns a VALID response with probability
2~ (Fm—Fm-1) Again, we use a counter to test the 2Fm=Fm-1 yalues in positions
Fp 1, Fp_1+1,..., F, —1. After an average of about 2 ~Fm-1=1 and at most
2Fm—Fm—1 trials, we will obtain a VALID response. In this case, we learn that
S @ dk(Cy) is equal to ‘0’ in the rightmost n — F,,_1 positions.

It is now straightforward to see how Algorithm 2] proceeds in this manner to
eventually construct a valid ciphertext of the form:

I',CH[00...0[|...]|00...0||R||C)

q1—3 blocks

so that the corresponding last plaintext block contains ‘0’ padding bits in the
rightmost n — F} positions. Then a simple calculation shows that the rightmost
n — F} bits of Py are equal to the rightmost n — F; bits of the block R & Cj_.

3.3 Complexity and Impact

It takes an average of just over 2f5+1=Fi—1 oracle queries to obtain a VALID

response and recover the bits at positions F} to Fji1 — 1 of P. So the av-
erage number of oracle queries needed to recover n — F; bits of plaintext is
Z;_”:l 2Fi+1=Fi=1 The worst-case complexity is twice this. Notice that when
Fy =1 and Fj41 — F; = 1 for each j, the average number of oracle queries
needed to decrypt all but the leftmost bit of an n-bit block is just n — 1. In this
case, at most two oracle queries are made for each j. In fact, since the outcome
of the second oracle query is determined by the first, it is trivial to modify the
attack so that n — 1 queries also represents the worst-case performance.

As an example, suppose the block size n = 64 and the data is byte-oriented.
Suppose we can obtain 7 auxiliary ciphertexts whose lengths modulo 64 are 8,
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16, 24, ..., 56. Then we have m = 7 and the average number of oracle queries
needed to obtain 56 out of 64 plaintext bits is roughly 900. If the plaintext has
some sort of predictability (e.g. ASCII characters making up an English text, or
certain positions in a message within some known protocol), then the remaining
byte might be easily guessed.

3.4 Limitations

Unfortunately, we have not succeeded in finding a method to extract the leftmost
F7 > 1 bits of the plaintext block Pj. The underlying reason is that, when the
original data fits exactly within blocks, the default padding rule is to add no
padding bits at all. This makes it difficult to set up a padding oracle test giving
plaintext information.

Algorithm [I] can only find the contents of the length block for ciphertexts
with at least 3 blocks. Whilst we are usually more interested in plaintext bits
than length information, it would be convenient if Algorithm 2] could be applied
to block C; of a two-block target ciphertext to extract the length information
Lp. However, this would require knowledge of the IV (since block Ck_; is used
at the last stage of our attack to recover the original plaintext bits). A lower
bound on this length can be found by running Algorithm [Z] on target block Co
and finding the position of the rightmost one in Ps.

3.5 Comparison

The secret and random conditions on IVs have forced us to develop a completely
new attack strategy against padding method 3 of [I]. The corresponding attack in
[8] makes near-optimal use of the padding oracle and extracts all plaintext bits.
To be efficient, our new attack requires the collection of auxiliary ciphertexts
with a good spread of data lengths. There might be scenarios where this is
unrealistic. Our new attack can never extract the leftmost data bits in each
block. In the best case, it can recover all but the leftmost bit of plaintext using
an optimal number of oracle queries (if we ignore the cost of finding the lengths
of the auxiliary ciphertexts). Our attack cannot be extended to yield efficient
attacks in the second attack scenario in which the adversary has no information
about IVs at all. The reason is that the length information is placed in the first
plaintext block — as a result, a random setting of the IV is almost certain to
produce an INVALID response from the padding oracle.

In summary, in comparison to [§], the secret IV restriction has succeeded in
increasing the complexity and decreasing the effectiveness of an attack. However,
the attack is still feasible in many circumstances.

4  Analysis of Padding Method 3 of ISO/IEC 10118-1

4.1 Review of Padding Method and Previous Attacks

We reproduce below the original description of the padding method from [2], ex-
cept that here, and throughout, we use n in place of L; to denote the block size:
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“This padding method requires the selection of a parameter r (where
r <mn), e.g. r =64, and a method of encoding the bit length of the data
D, ie. Lp as a bit string of length r. The choice for r will limit the
length of D, in that Lp < 2".

“The data D [...] is padded using the following procedure.

1. D is concatenated with a single ‘1’ bit.

2. The result of the previous step is concatenated with between zero
and n — 1 ‘0’ bits, such that the length of the resultant string is
congruent to n — r modulo n. The result will be a bit string whose
length will be 7 bits short of an integer multiple of n bits (in the
case r = n, the result will be a bit string whose length is an exact
multiple of n bits).

3. Append an r-bit encoding of Lp using the selected encoding method,
yielding the padded version of D.”

No encoding method (for Lp) is specified in the standard. We assume that
base 2 encoding is used. Our attacks here work no matter which encoding method
is used, though the attacker needs to know this method.

Using this padding method, the padding bits for data string D are appended
in one of two ways:

Same-block Here (Lp mod n) < (n —r — 1). The last block of D has enough
space after the last data bit to contain at least a single ‘1’ bit and the r bits
encoding Lp. The number of padding bits (including the length information)
is between r + 1 and n — 1.

Cross-block Here (Lp mod n) > (n — r). The last block of D does not have
enough space to contain a ‘1’ bit and the r bits encoding Lp. The number
of bits padded is between n and n + r and the padding either fits exactly
into an extra block or extends over two blocks. Note that this will always be
the case when r =norr=n—1.

In [8], the authors presented two inter-dependent attacks against this padding
method. The first attack creates a valid ciphertext with the target ciphertext
block as the last block, while the second attack decrypts the last block of any
ciphertext.

In more detail, Attack 1 of [8] (named “directed IV search”) takes a ciphertext
block Cj as input, and outputs a valid ciphertext of the form I'V'||Cy. It operates
by searching for an IV setting that produces a valid ciphertext. This ciphertext
is then fed into Attack 2 for decryption. The need to vary the IV in a controlled
manner means that the attack does not work when IVs are secret.

Attack 2 of [§] (named “attacking the last block(s)”) takes as input a whole
ciphertext and operates in two phases. In the first phase, it finds Lp; in some
cases (including those resulting from Attack 1 of [§]) this involves changing bits
in the IV. So this phase does not work in general for secret IVs. In the second
phase plaintext bits are extracted. In the case of a same-block padded ciphertext,
this second phase does not require any control over the I'V. So it will continue to
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function with only minor modifications in the new setting. In the case of a cross-
block padded ciphertext, the second phase can be used to speed up Attack 1 of
[8]. This will fail with secret IVs, since Attack 1 of [§] requires their controlled
modification.

Despite the failure of Attacks 1 and 2 of [§], a similar strategy can be followed
and the original attacks can be modified to work in the tougher of our two attack
scenarios. Analogues of Attacks 1 and 2 of [§] are presented in Sectionsf2land 3

4.2  Attacking an Arbitrary Ciphertext Block

The attack we present in this section attempts to decrypt an arbitrary block
Cy of a ciphertext C1||Cs]|...||Cq. In fact, our attacks only work for k > 2.
It proceeds in two phases. In the first phase, a valid ciphertext is constructed
having C) as the final block. In the second phase, the attack of Section .3 is
used to decrypt that final block. From this, P is easily found. Note that if Cj is
the target block, then one should proceed directly to the attack of Section

Phase 1: Constructing a Valid Ciphertext. In this phase, we construct
a valid three-block or four-block ciphertext having target block Cy as the last
block. We aim for ciphertexts of these lengths because they simplify the second
phase of the attack: we will see in Section 3] that ciphertexts containing ¢ > 3
blocks are the easiest ones to deal with.

This phase splits into two cases, dependent on the value of 7.

In the first case, we have r < n. The algorithm for this case is given in
Algorithm [3] and is next described in words. The algorithm essentially submits
three-block ciphertexts of the form:

00...0||Rz||Ck

n

to the padding oracle, for various values of Ry chosen in such a way that at least
one choice is guaranteed to produce a valid ciphertext. Our algorithm works no
matter what IVs are used by the padding oracle. Note that we suppress any
information I in submissions to the padding oracle here, and throughout this
section, because we are operating in the second attack model.

In more detail, a counter ¢ is used to determine the rightmost r + 1 bits of
R5, while the leftmost n — r — 1 bits are set to ‘0’. This effectively means that
ciphertexts with all possible values of the length field in plaintext block Pj are
submitted to the oracle as i runs between 0 and 2" — 1, the first half of the
search space. At least one choice of ¢ in this range is guaranteed to result in a
VALID response from the oracle unless Cj, and the selection of Ry mean that the
leftmost n — r bits of P4 are all ‘0’. If this last case occurs, then considering all 4
between 2" and 2”1 — 1 ensures that one of the leftmost n — r bits of P} is a ‘1’
and that at least one choice of 7 results in a VALID response. We will evaluate
the average and worst-case complexity of this case of Phase 1 below.
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In the second case, where r = n, a similar attack applies. We now submit
four-block ciphertexts of the form:

00...0||Ry||Ra||Ch

n

to the padding oracle, where we try all possible settings of Ry and the rightmost
bit of R;. We are then guaranteed to encounter a valid ciphertext after a maxi-
mum of 2" oracle calls. The algorithm for this case is given in Algorithm F
we analyse its complexity in detail below.

Phase 2: Decrypting Cj. Once we have a valid three or four-block ciphertext,
the attack of Section[L3]can be applied to obtain the plaintext block Pj (or Pj in
the four-block case) corresponding to the final block of C’. From P4, the original
plaintext block Py can be recovered using the relation P, = P & Ry & Ci_1.
(A similar procedure applies for the four-block case.) As we shall see below, the
attack of Section is always efficient when attacking the last block of a three-
block (or four-block) ciphertext. So this approach allows efficient extraction of
Py.

A little more detail is appropriate at this stage. We focus on the three-
block case. The first phase of the attack in Section finds the length Lp
of the data encrypted in C’. If Lp > 2n, then the data is same-block padded,
while if Lp < 2n it is cross-block padded. If it happens that the data is cross-
block padded, then all the bits in P} (or Pj in the four-block case) are already
determined and are of the form:

...0(L 10...0(L .
00 0( D)g or 0 O( D)2

n—r r n—r r

So in this case no actual decryption step is needed to recover Py. Notice that this
case will always apply when r = n or r = n — 1. When the data is same-block
padded, we must proceed to the second phase of the attack in Section B3l In
the three-block case, this phase will efficiently recover the entire plaintext block
P} consisting of (in general) data bits, padding bits and length information.
From P}, we can recover Py using the relation P, = P @ Ry & Cj_1. A similar
procedure applies for the four-block case.

Complexity. We begin by analyzing Phase 1 of the attack in the case where
r < n. The analysis is complicated by the fact that Algorithm [3] might out-
put a valid three-block ciphertext C’ for which the corresponding plaintext
P’ = P{||P4||P; is cross-block padded. This will have the effect of slightly low-
ering the average-case complexity when compared to the corresponding attack
in [§]. Such a cross-block padded plaintext requires that blocks Pj||Pj take the
form:

PyoPyy...Pyy, i 110...0]]00...0(Lp)s

2n—Lp n—r r
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where each Py ; can be either a ‘0" or ‘1’ bit and (2n —7) < Lp < (2n —1).
There are r n-bit patterns (corresponding to the r possible values of Lp) for
P} that have the correct form. So the probability that Phase 1 produces cross-
block padding is at most r2"~™ as we vary the rightmost r bits of Ry in Al-
gorithm B1 Of course, such cross-block padding may never occur during the
execution of Algorithm Bl given that R; and the decryption key K are fixed,
there may be no choice of Ry that produces the required bit pattern in Py =
dK(RQ) @ R;.

In any case, we see that there is a probability of at least 1 —2"~" that either
there is a ‘1’ somewhere in the leftmost n — r bits of Pj, or we obtain a cross-
block padded ciphertext. In these cases, Algorithm [3] takes on average 27!
oracle calls. On the other hand, there is a probability of at most 2"~ that the
leftmost n — r bits of P4 are all ‘0’ and Algorithm Bl tries all 2" possible settings
for the rightmost bits of P without a VALID response. Algorithm B] will then
take on average a further 2"~! oracle calls before obtaining a VALID response. A
simple calculation now shows that the average number of oracle calls needed by
Algorithm Bl is at most 277! + 22"=" while in the worst-case it is 2”1, When
r is small relative to n, the average-case complexity is dominated by the term
2r—1,

Phase 1 of the attack in the case r = n uses Algorithm ] This algorithm
uses on average 2" oracle calls to obtain a VALID response and 2"*! in the worst
case.

Phase 2 uses the attack in Section for the same-block padded case, which
has a complexity of O(n) oracle calls. So Phase 2 does not contribute significantly
to the overall complexity required to decrypt a single block (unless r is very
small).

Impact. This attack applies to any ciphertext block Cj of a ciphertext
Ci1||Cs]| - .. ||Cy, except for the first block Cy. It is not possible to decrypt Cy
because of the use of the relation P, = P, @ Cr_1 ® Rz at the end of the attack:
this would necessitate an XOR with the secret IV. The attack recovers all n bits
within the block and does so many orders faster than exhaustive search for many
choices or r. When r = n our attack is still better than exhaustive key search
for block ciphers whose key size is greater than the block length. We restate the
observation from [§] that the seemingly innocuous parameter r has unexpected
implications for security.

Comparison. This attack is an adaptation of Attack 1 in [8] to the second of
our attack models, where IVs are secret, random and completely hidden from
the adversary. These extra restrictions do not seem to be a major hindrance
to the effectiveness of the attack. Specifically, the complexity of the attack has
remained practically the same as the corresponding attack in [8], and, except
for the first ciphertext block, the impact remains unchanged. The attack uses
three-block or four-block ciphertexts instead of two-block ones when r < n; this
is not expected to be of any practical significance.
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4.3  Attacking the Last Block(s)

The attack we present in this section attempts to decrypt the last block C, of
a ciphertext C1]|Cs]|...[|Cy. It is an adaptation of Attack 2 in Section 4.3 of
[8] to the secret and random IV setting, and, like that attack, proceeds in two
phases. Phase 1 determines the length L of the ciphertext, while Phase 2 will
recover plaintext bits in the mixed block containing both padding and data bits.
(If there is such a block, then it is unique.) Recall that, as well as being directly
applicable to the last block Cy, our attack can also be used in conjunction with
the attack in Section to decrypt arbitrary ciphertext blocks.

Phase 1: Finding Lp. This phase of our attack is derived from the correspond-
ing phase in [§]. The case ¢ = 2 requires special treatment and our methods fail
completely when ¢ = 1. We first examine the general case ¢ > 3.

For ease of presentation we take r < n — 2, but Algorithm [5] handles all
values of r. Here, in the same-block padded case, the last plaintext block P, has
the following format:

[DATA] 10 - 0(Lp)2
t T

where t+p+1r =mn and p > 1. In the cross-block padded case, the above format
spans the last two blocks P,_; and P, and we put ¢ + p +r = 2n. We note that
the attacker does not, at first, know which of the cases he is faced with.

Given our g-block ciphertext, the rightmost position at which a data bit could
ever reside is at P, ,_,_2. Consider then submitting to the padding oracle the
ciphertext:

n—r—2 r+1

The oracle will return either:

— VALID, meaning the padding has not been disturbed so the bit flipped in Pé
by modifying C;—; is a data bit. Since this bit is at the rightmost possible
data bit position, we can deduce that the data length Lp equals (¢ — 1)n +
n—r—1l=gn—r—1.

— or INVALID, meaning a padding bit has been flipped so the padding is no
longer valid. Therefore the padding boundary is somewhere to the left of this
bit.

We can generalise the above observation about P, ,_,_2 to produce Algo-
rithm [B] a binary search algorithm to find Lp. In this algorithm, we initialise
two pointers [ and u at the extremities of the possible padding range and modify
the ciphertext so as to invert the plaintext bit that lies in the middle position
h = (I 4+ u)/2] of the range. We then submit the ciphertext to the oracle. A
VALID response means the start of the padding is to the right of this test bit so
we set the lower pointer [ to the position h 4 1, whereas INVALID indicates it is
to the left and we set the upper pointer v to h. We must then reset the test bit
before proceeding to the next test. This process is repeated until the upper and
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lower pointers coincide, at which point they indicate the rightmost data bit. It
is then easy to determine Lp. Clearly, the algorithm makes roughly log, n calls
to the padding oracle and so is efficient.

This completes our discussion of the general case where ¢ > 3. Next we focus
on the case ¢ = 2. This case requires special treatment because setting up a
binary search as above requires the ability to modifiy plaintext bits in the whole
range of padding positions, which in this case includes those in the rightmost
r positions of the plaintext block P;. This in turns necessitates the ability to
modify bits in the corresponding positions in the IV, which is not possible in the
setting of secret and random IVs.

Our solution, presented in Algorithm [E] is to perform a binary search over
the restricted range of those padding positions in the second (and last) plaintext
block P,. This is done by initializing the lower and upper pointers to n and
2n + r — 1 respectively. If the search finishes pointing to any position between
P, 1 and Ps,_,_1 then this indicates the actual leftmost padding position from
which Lp can be determined. On the other hand, if the search ends pointing
at P, then we can deduce that the bit at that position is a padding bit and
hence the boundary is somewhere to the left of that position. From this we can
deduce that the plaintext block P, consists only of padding bits and encoded
length information, and that Ly < n. We could go further and deduce most of
the contents of block P», but these bits are not usually of much interest to the
attacker. In this case, we cannot continue with the attack.

We note that this ¢ = 2 version of the length-finding algorithm is never
invoked by the attack in Section (unless Cs is the last block and happens to
be the initial target).

Finally we consider the case ¢ = 1. Here we are not able to find Lp by
performing any kind of search for the data/padding boundary since this would
require manipulating the IV. Thus our methods fail in this case.

Phase 2: Decrypting. We assume that ¢ > 2 and that Lp has been success-
fully obtained from Phase 1. This will always be the case for ¢ > 3 and often
the case for ¢ = 2. Same-block and cross-block padded messages are treated
differently; recall that knowledge of Lp indicates with which case the attacker
is faced.

Decrypting: Same-block. Recall the structure of the last plaintext block Fy: ¢
unknown data bits, followed by p padding bits in the form 10...0 and finally r
bits encoding the data length Lp. The only bits remaining to be found are the
t data bits. We can assume that ¢ > 1 and recover these as follows. Consider
submitting to the oracle the ciphertext C’ = R||C|, where:

R=Cy1®00...0(Lp)2®00...010...0(n+t—1).

n—r t D r

(s

This ciphertext is constructed in such a way that, after decryption to obtain
plaintext Pj||P5, the length block in Pj encodes the length n + ¢ — 1, while the
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p padding bits are modified to be all ‘0’s. Moreover, data bits are copied intact
from P, to Py, so that P, ; = P; ; for 0 < < t. From the construction of C’, we
see that the oracle will output VALID if and only if Py, ; = 1. Since we have
Py i1 = Py, 1, we can obtain the last data bit of block F,.

This idea can be extended to recover all ¢ data bits in Pq in a similar manner:
we reduce the length field in Pj one step at a time whilst fixing the data in all
recovered bit positions to be ‘0’ so that they become part of a valid padding. A
single bit of P; and hence of P, is revealed at each iteration, until all the data
bits in P, are recovered. This procedure is given in detail in Algorithm [7] Note
that the algorithm makes use of the function (2 defined by:

() = 1 if the padding oracle returns VALID for input C,
~ |0 if the padding oracle returns INVALID for input C.

Note that {2 is the complement of the function (2 in [§].

Decrypting: Cross-block. For cross-block padded plaintexts with ¢ > 3 blocks,
P, is determined completely by Lp and the padding. However, the padding often
extends into the penultimate plaintext block P;_; and we can exploit this fact
when decrypting block Cy_;.

Suppose t = Lp mod n and t # 0. Then u = n —t bits of padding of the form
10...0 are present in P,_;. We show how to decrypt Cy_; using the attack in

Section B2 but with a speed-up factor of 2¢~!. Consider ciphertexts of the form
C"=00...0]|R2||Cq—1 where:

Ry=C, 2600...010...0600...0(3n—r—1);.

t u n—r r

Upon decryption, this ciphertext will produce a plaintext block Pj of the form:

P?;,Opé,l s Pé,t—lyOyl s Yu—1

where yoy; ... yu_1 are the u least significant bits of the binary encoding of the
length field 3n —r — 1. Now it is straightforward to see that running through all
2r—u+1 gettings of the r — u + 1 bits immediately to the left of the rightmost u
bits (by varying the relevant bits of Ry) will ensure that at least one valid three-
block ciphertext C” is obtained. Naturally, after obtaining such a valid C’, we
can apply the attack of this section again, now using C” as the input ciphertext.
Eventually, that attack will output a candidate P4 for the decryption of block
Cy—1 in ciphertext C’; from this we can deduce the decryption P,_; of Cy_; in
the original ciphertext C' using the relation P,_; = P5 & Ry & C'q 2.

This strategy takes on average about 2"~ “u oracle calls which is roughly a
fraction 27(*=1) of the number of oracle calls needed on average for the corre-
sponding attack in Algorithm [3] without the knowledge of the u padding bits.

Unfortunately this strategy does not work for two-block cross-block padded
ciphertexts in our attack model, because the very last step would need to use
IV in place of Cy_o.
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Complexity. For ¢ > 3, Phase 1 of the attack takes roughly log, n oracle calls
to find the data length Lp. For same-block padded plaintexts, Phase 2 then
takes one call per bit for decrypting. So to recover the ¢ data bits in the last
block, ¢ +log, n oracle calls are required. For cross-block padded plaintexts, the
block P, is completely determined by Lp. Then Phase 2 needs on average around
2"~ oracle calls to recover the whole of the penultimate plaintext block F,_;.
Here u is the number of known padding bits in P;_; and we have ignored the
comparatively small cost of running the length-finding and last-block decryption
algorithms of this section.

For two-block ciphertexts, Phase 1 will take on average log,(n — r) oracle
calls to find either the actual value of Lp or to find that Lp < n. In the former
case, the complexity of Phase 2 is exactly as above. In the latter case, the data
is cross-block padded but we are not able to recover the penultimate plaintext
block. Phase 1 of the attack is not successful for single-block ciphertexts and no
data bits can be extracted using our attack in this case.

It is important to note that, even though the two attacks presented here and
in Section are inter-dependent, there is no possibility of the attack entering
an infinite loop. This is not difficult to show.

Impact. The attack is highly efficient (in terms of oracle access) at extracting
plaintext bits in the last plaintext block P,. A maximum of n —r — 1 bits of
data can be recovered in this way and the attack is therefore significant for short
messages, especially in combination with a small 7. One might argue that r =n
is a natural choice for the implementor. In this case, the padding is always cross-
block and the attacker must resort to the speeded-up version of the attack in
Section

Comparison. One impact of assuming that IVs are secret and random on the
attack in this section is that Phase 1 of the attack is prevented from determining
the exact data length of single-block ciphertexts, and two-block ones when the
plaintext is cross-block padded. This, in turn, stops us from extracting any data
bits in these cases. This is in contrast to the corresponding cases in []], where
the ability to manipulate the IV can be used to advantage.

The complexity of the two phases remains unchanged when compared to
the corresponding attack in [8] (log,n oracle calls to find Lp and one oracle
call per data bit extracted for same-block padding). Short ciphertexts, typically
two or three blocks long, are used throughout, so there is little or no message
expansion.

5 Conclusions

We have shown that the use of IVs that are secret and random does not prevent
padding oracle attacks on CBC-mode encryption. We have shown this to be the
case in the context of two padding methods previously analyzed in [8]. The use of
secret, random IVs required us to develop new ideas and to extend the analysis
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of [8]. The new attacks are, at best, of roughly equal complexity to those of
[8] and the assumptions we have made to obtain attacks seem reasonable. The
attacks recover most, if not all, plaintext bits many orders of magnitude faster
than exhaustive key search.

The 2004 FCD text for the 3rd edition of ISO/IEC 10116 [4], which supersedes
[3], contains new text regarding padding methods in Clause 5 (Requirements).
It now reads

... Padding techniques. .. are not within the scope of this International
Standard, and throughout this standard it is assumed that any padding,
as necessary, has already been applied.

This effectively off-loads the responsibility of choosing a padding method to the
implementor of this standard (if it is published with the text as it stands). In our
view, not specifying a padding method at all has the potential to be even more
dangerous than specifying a method that is known to be weak against certain at-
tack types. After all, there is no guarantee that an implementor will not choose
a method that falls to some even more realistic form of attack. Methods that ap-
pear to resist padding oracle attacks have been analysed [6]. For example, padding
method 2 of [1], in which the plaintext is padded with a single ‘1’ and as many ‘0’s
as are necessary to complete a block, seems like a good candidate. We currently
know of no reason not to recommend it for use. We argue that the more complete
and unambiguous a specification is, the smaller the chance for insecure approaches
to be taken by an implementor.

Finally, we wish to repeat the point made in [6L8] that padding oracle at-
tacks can be easily thwarted by the proper use of strong integrity checks. It
is now widely held that encryption should be accompanied by a data integrity
mechanism whenever feasible and appropriate. Of course there are situations
(for example, constrained environments) where the use of a MAC algorithm in
addition to encryption is not possible. In these scenarios, the careful selection of
a padding method and the avoidance of padding oracles in implementations is
of paramount importance.
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Appendix

We present here pseudo-code for the various algorithms developed in the text.

Algorithm 1.

Input: I,C1||Cy||...]|Cq
Output: Lp

function 9797-1-M3-GET-L p-GENERAL
[:=0
u:=n-—1
repeat
h:=[(l4+u)/2]
Co1,h i =Cq1n @1

if ORACLE(I, C1||C2]|...||Cq) = VALID then
l:=h

else
u:=h-—1

end if

Cog—1,p = Cq1,n @1
until [ =u
return Lp :=(¢—1)n+1+1
end function
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Algorithm 2.

Input: auxiliary ciphertexts C', C2%, ..., C™, IV-determining information I*, I?,
, Fim, target ciphertext blocks

.., I, length information gqi,...,qm and Fi,...
Cr_1, Cx
Output: rightmost n — Fi bits of Py
function 9797-1-M3-DECRYPT
R:=00...0
~—
Fm+1 ::nn
for j:=mto 1 do
1= —1
repeat
1:=1+1
S:=R®00...0 (z)2 00...0
—_— L

Fi Fip—F; i
until oRACLE(I?,C7|[00...0||...]|00...0]|S||Ck) = VALID
q;j—3 blocks

R:=R&®00...0 (i) 00...0
—
Fj P —Fy i

end for
return rightmost n — I3 bits of R ® Ck_1

end function

Algorithm 3.

Input: Ci, r, n
Output: A valid three-block ciphertext, the last block of which is Cj

Require: 1<r<n
function 10118-1-M3-GENERAL(CY, T, 1)
R1 :=00...0
——
RQ = 00 e 0
——
i:=0
while ORACLE(R1]||R2||Cx) = INVALID do
i:=1+1
RQ :=00...0 (Z)Q
S~
n—r—1 ra1
end while

return R;||Rz||Ck
end function




318 A K.L. Yau, K.G. Paterson, and C.J. Mitchell

Algorithm 4.

Input: Cy, r, n
Output: A valid four-block ciphertext, the last block of which is Cj
Require: r=n

function 10118-1-M3-SPECIAL(Ck, , )
R1 :=00...0
~—

n

RQ = 000
N——
i=0
while ORACLE(00...0]||R1||Rz2||Cx) = INVALID do
———
=1+ 1
if i = 2" then
1:=0

Ry :=00...01
N—_——
end if
R2 = (2)2
—
end while
return 00...0||R1||R2||Ck
——

n
end function

Algorithm 5.

Input: C4]|C||...||Cq,n,7
Output: Lp
Require: q>3
function 10118-1-M3-FIND-L p-GENERAL(C1]||Cs]| ... ||Cq, n, T)

C = Cil|Call...1IC,
l:==(@—-2)n+n-—r
u=(qg—1)n+n—r—1
repeat
h:=[(+u)/2]
CLh/nJ,h mod n ‘= CLh/nJ,h mod n D 1
if ORACLE(C) = VALID then

l:=h+1
else

u:=h
end if

CLh/nJ,h mod n +— CLh/nJ,h mod n D 1
until [ = u
return Lp =1
end function
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Algorithm 6.

Input: C4]|Ce,n,r
Output: Lp or “Plaintext length at most n”

function 10118-1-M3-FIND-L p-SPECIAL(C1]||Cq, n, r)

C = 01”02
l:=n
u:=2n—r—1
repeat

h:={(+u)/2]
CLh/nJ,h mod n ‘= CLh/nJ,h modn @1
if ORACLE(C) = VALID then

l:=h+1
else

u:=h
end if

CLh/nJ,h mod n ‘= CLh/nJ,h modn @1
until = u

if [ > n then

return Lp =1
else

return “Plaintext length at most n”
end if

end function

Algorithm 7.

Input: Lp,Cq—1,Cq,m,n

Output: Py := Py oP;1...P;+-110...0(Lp)2

——
p r

Require: Lp indicates that the plaintext is same-block padded

function 10118-1-M3-DECRYPT(Lp, Cy—1, Cy, 7, n)
t:=Lpmodn
pi=n—1r—1
RI:CL171@00..,010...O(LD)Q@OO...O(TL+t)2
SN—— N~ — e N ——e—
t P r n—r r
for j:=t—1to0do
R:=R®00...0(n+j+1):2®00...0(n+j)2
T ——— TV ——

n—r r n—r r

Py = Q(RHCq)

Rj = R; © Py
end for
return P, .= 7()P,l...lj,t_l 10...0(LD)2
q 4,047 q -

end function
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