Skip to main content

Towards a Theoretical Foundation for Laplacian-Based Manifold Methods

  • Conference paper
Learning Theory (COLT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3559))

Included in the following conference series:

Abstract

In recent years manifold methods have attracted a considerable amount of attention in machine learning. However most algorithms in that class may be termed “manifold-motivated” as they lack any explicit theoretical guarantees. In this paper we take a step towards closing the gap between theory and practice for a class of Laplacian-based manifold methods. We show that under certain conditions the graph Laplacian of a point cloud converges to the Laplace-Beltrami operator on the underlying manifold. Theorem 1 contains the first result showing convergence of a random graph Laplacian to manifold Laplacian in the machine learning context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belkin, M.: Problems of Learning on Manifolds, The University of Chicago, Ph.D. Dissertation (2003)

    Google Scholar 

  2. Belkin, M., Niyogi, P.: Using Manifold Structure for Partially Labeled Classification. In: NIPS 2002 (2002)

    Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  4. Belkin, M., Niyogi, P., Sindhwani, V.: On Manifold Regularization, AI Stats (2005)

    Google Scholar 

  5. Bengio, Y., Paiement, J.-F., Vincent, P., Delalleau, O., Le Roux, N., Ouimet, M.: Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering. In: NIPS 2003 (2003)

    Google Scholar 

  6. Bernstein, M., de Silva, V., Langford, J.C., Tenenbaum, J.B.: Graph approximations to geodesics on embedded manifolds, Technical Report (2000)

    Google Scholar 

  7. Bousquet, O., Chapelle, O., Hein, M.: Measure Based Regularization. In: NIPS 2003 (2003)

    Google Scholar 

  8. Bengio, Y., Paiement, J.-F., Vincent, P.: Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering. In: NIPS 2003 (2003)

    Google Scholar 

  9. Chapelle, O., Weston, J., Schoelkopf, B.: Cluster Kernels for Semi-Supervised Learning. In: NIPS 2002 (2002)

    Google Scholar 

  10. Chung, F.R.K.: Spectral Graph Theory. In: Regional Conference Series in Mathematics, vol. 92 (1997)

    Google Scholar 

  11. do Carmo, M.: Riemannian Geometry. Birkhäuser, Basel (1992)

    MATH  Google Scholar 

  12. Donoho, D.L., Grimes, C.E.: Hessian Eigenmaps: new locally linear embedding techniques for high-dimensional data. In: Proceedings of the National Academy of Arts and Sciences, vol. 100, pp. 5591–5596

    Google Scholar 

  13. Hein, M., Audibert, J.-Y., von Luxburg, U.: From Graphs to Manifolds – Weak and Strong Pointwise Consistency of Graph Laplacians. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 470–485. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Meila, M., Shi, J.: Learning segmentation by random walks. In: NIPS 2000 (2000)

    Google Scholar 

  15. Memoli, F., Sapiro, G.: Comparing Point Clouds, IMA Technical Report (2004)

    Google Scholar 

  16. Lafon, S.: Diffusion Maps and Geodesic Harmonics, Ph. D. Thesis, Yale University (2004)

    Google Scholar 

  17. von Luxburg, U., Belkin, M., Bousquet, O.: Consistency of Spectral Clustering, Max Planck Institute for Biological Cybernetics Technical Report TR 134 (2004)

    Google Scholar 

  18. Ng, A., Jordan, M., Weiss, Y.: On Spectral Clustering: Analysis and an Algorithm. In: NIPS 2001 (2001)

    Google Scholar 

  19. Niyogi, P.: Estimating Functional Maps on Riemannian Submanifolds from Sampled Data presented at IPAM Workshop on Multiscale structures in the analysis of High-Dimensional Data (2004), http://www.ipam.ucla.edu/publications/mgaws3/mgaws3_5188.pdf

  20. Niyogi, P., Smale, S., Weinberger, S.: Finding the Homology of Submanifolds with High Confidence from Random Samples, Univ. of Chicago Technical Report TR-2004-08 (2004)

    Google Scholar 

  21. Rosenberg, S.: The Laplacian on a Riemannian Manifold. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  22. Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290 (2000)

    Google Scholar 

  23. Smola, A., Kondor, R.: Kernels and Regularization on Graphs. In: COLT/KW 2003 (2003)

    Google Scholar 

  24. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8) (2000)

    Google Scholar 

  25. Spielman, D., Teng, S.: Spectral partitioning works: planar graphs and finite element meshes. In: FOCS 1996 (1996)

    Google Scholar 

  26. Szummer, M., Jaakkola, T.: Partially labeled classification with Markov random walks. In: NIPS 2001 (2001)

    Google Scholar 

  27. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290 (2000)

    Google Scholar 

  28. Kannan, R., Vempala, S., Vetta, A.: On Clusterings - Good, Bad and Spectral, Technical Report, Computer Science Department, Yale University (2000)

    Google Scholar 

  29. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schoelkopf, B.: Learning with Local and Global Consistency. In: NIPS 2003 (2003)

    Google Scholar 

  30. Zhu, X., Lafferty, J., Ghahramani, Z.: Semi-supervised learning using Gaussian fields and harmonic functions. In: ICML 2003 (2003)

    Google Scholar 

  31. Zomorodian, A., Carlsson, G.: Computing persistent homology. In: 20th ACM Symposium on Computational Geometry (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belkin, M., Niyogi, P. (2005). Towards a Theoretical Foundation for Laplacian-Based Manifold Methods. In: Auer, P., Meir, R. (eds) Learning Theory. COLT 2005. Lecture Notes in Computer Science(), vol 3559. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11503415_33

Download citation

  • DOI: https://doi.org/10.1007/11503415_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26556-6

  • Online ISBN: 978-3-540-31892-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics