Skip to main content

Discovering Learning Paths on a Domain Ontology Using Natural Language Interaction

  • Conference paper
Innovations in Applied Artificial Intelligence (IEA/AIE 2005)

Abstract

The present work investigates the problem of determining a learning path inside a suitable domain ontology. The proposed approach enables the user of a web learning application to interact with the system using natural language in order to browse the ontology itself. The course related knowledge is arranged as a three level hierarchy: content level, symbolic level, and conceptual level bridging the previous ones. The implementation of the ontological, the interaction, and the presentation component inside the TutorJ system is explained, and the first results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pirrone, R., Cossentino, M., Pilato, G., Rizzo, R.: TutorJ: a web-learning system based on a hierarchical representation of information. In: II Workshop: Web Learning per la qualità del capitale umano, Ferrara, Italy, pp. 16–23 (2004)

    Google Scholar 

  2. Brusilovsky, P., Rizzo, R.: Map-Based Horizontal Navigation in Educational Hypertext. Journal of Digital Information 3 (2002)

    Google Scholar 

  3. Coursey, K.: Living in CyN: Mating AIML and Cyc together with Program N (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pirrone, R., Cossentino, M., Pilato, G., Rizzo, R., Russo, G. (2005). Discovering Learning Paths on a Domain Ontology Using Natural Language Interaction. In: Ali, M., Esposito, F. (eds) Innovations in Applied Artificial Intelligence. IEA/AIE 2005. Lecture Notes in Computer Science(), vol 3533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11504894_42

Download citation

  • DOI: https://doi.org/10.1007/11504894_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26551-1

  • Online ISBN: 978-3-540-31893-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics