Skip to main content

An Algorithm Based on Counterfactuals for Concept Learning in the Semantic Web

  • Conference paper
Innovations in Applied Artificial Intelligence (IEA/AIE 2005)

Abstract

Semantic Web, in order to be effective, needs automatic support for building ontologies, because human effort alone cannot cope with the huge quantity of knowledge today available on the web. We present an algorithm, based on a Machine Learning methodology, that can be used to help knowledge engineers in building up ontologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001)

    Google Scholar 

  2. RDF-Schema: RDF Vocabulary Description Language 1.0: RDF Schema (2003), http://www.w3c.org/TR/rdf-schema

  3. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From \(\mathcal{SHIQ}\) and RDF to OWL: The making of a web ontology language. J. of Web Semantics 1, 7–26 (2003)

    Google Scholar 

  4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  5. Gruber, T.R.: A translation approach to portable ontology specifications (1993)

    Google Scholar 

  6. Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intelligent Systems 16 (2001)

    Google Scholar 

  7. Astrova, I.: Reverse engineering of relational databases to ontologies. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 327–341. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48, 1–26 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Badea, L., Nienhuys-Cheng, S.H.: A refinement operator for description logics. In: Cussens, J., Frisch, A. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive induction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 411–426. Springer, Heidelberg (2004)

    Google Scholar 

  11. Teege, G.: A subtraction operation for description logics. In: Torasso, P., Doyle, J., Sandewall, E. (eds.) Proceedings of the 4th International Conference on Principles of Knowledge Representation and Reasoning, pp. 540–550. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  12. Vere, S.: Multilevel counterfactuals for generalizations of relational concepts and productions. Artificial Intelligence 14, 139–164 (1980)

    Article  MATH  Google Scholar 

  13. Brandt, S., Küsters, R., Turhan, A.Y.: Approximation and difference in description logics. In: Fensel, D., Giunchiglia, F., McGuinness, D., Williams, M.A. (eds.) Proceedings of the International Conference on Knowledge Representation, pp. 203–214. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iannone, L., Palmisano, I. (2005). An Algorithm Based on Counterfactuals for Concept Learning in the Semantic Web. In: Ali, M., Esposito, F. (eds) Innovations in Applied Artificial Intelligence. IEA/AIE 2005. Lecture Notes in Computer Science(), vol 3533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11504894_53

Download citation

  • DOI: https://doi.org/10.1007/11504894_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26551-1

  • Online ISBN: 978-3-540-31893-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics