Skip to main content

A Decision Support Tool Coupling a Causal Model and a Multi-objective Genetic Algorithm

  • Conference paper
Innovations in Applied Artificial Intelligence (IEA/AIE 2005)

Abstract

The knowledge-driven causal models, implementing some inferential techniques, can prove useful in the assessment of effects of actions in contexts with complex probabilistic chains. Such exploratory tools can thus help in “forevisioning” of future scenarios, but frequently the inverse analysis is required, that is to say, given a desirable future scenario, to discover the “best” set of actions. This paper explores a case of such “future-retrovisioning”, coupling a causal model with a multi-objective genetic algorithm. We show how a genetic algorithm is able to solve the strategy-selection problem, assisting the decision-maker in choosing an adequate strategy within the possibilities offered by the decision space. The paper outlines the general framework underlying an effective knowledge-based decision support system engineered as a software tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stover, J., Gordon, T.J.: Cross-impact analysis. In: Fowles, J. (ed.) Handbook of Futures Research. Greenwood Press, Westport (1978)

    Google Scholar 

  2. Gordon, T.J., Hayward, H.: Initial experiments with the cross-impact method of forecasting. Futures 1(2), 100–116 (1968)

    Article  Google Scholar 

  3. Helmer, O.: Cross-impact gaming. Futures 4, 149–167 (1972)

    Article  Google Scholar 

  4. Turoff, M.: An alternative approach to cross-impact analysis. Technological Forecasting and Social Change 3(3), 309–339 (1972)

    Google Scholar 

  5. Helmer, O.: Problems in Future Research: Delphi and Causal Cross Impact Analysis. Futures 9, 17–31 (1977)

    Article  Google Scholar 

  6. Alarcòn, L.F., Ashley, D.B.: Project management decision making using cross-impact analysis. Int. Journal of Project Management 16(3), 145–152 (1998)

    Article  Google Scholar 

  7. Pearl, J.: Evidential Reasoning Using Stochastic Simulation of Causal Models. Artificial Intelligence 32, 245–257 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Linstone, H.A., Turoff, M. (eds.): The Delphi Method: Techniques and Applications (2002), Available at http://www.is.njit.edu/pubs/delphibook/index.html

  9. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation 3(1), 1–16 (1995)

    Article  Google Scholar 

  10. Goldberg, D.: Genetic Algorithms and Evolution Strategy in Engineering and Computer Science: Recent Advances and Industrial Applications. Wiley & Sons, Chichester (1998)

    Google Scholar 

  11. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of multiobjective optimization. Academic Press, Orlando (1985)

    MATH  Google Scholar 

  12. Srinivas, N., Deb, K.: Multiobjective function optimization using nondominated sorting genetic algorithms. Evolutionary Computation 2(3), 221–248 (1995)

    Article  Google Scholar 

  13. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  14. de Campos, L.M., Gàmez, J.A., Moral, S.: Partial abductive inference in bayesian belief networks using a genetic algorithm. Pattern Recogn. Lett. 20(11-13), 1211–1217 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blecic, I., Cecchini, A., Trunfio, G.A. (2005). A Decision Support Tool Coupling a Causal Model and a Multi-objective Genetic Algorithm. In: Ali, M., Esposito, F. (eds) Innovations in Applied Artificial Intelligence. IEA/AIE 2005. Lecture Notes in Computer Science(), vol 3533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11504894_88

Download citation

  • DOI: https://doi.org/10.1007/11504894_88

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26551-1

  • Online ISBN: 978-3-540-31893-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics