Abstract
We present a new approximation for the apparent diffusion coefficient (ADC) of non-Gaussian water diffusion with at most two fiber orientations within a voxel. The proposed model approximates ADC profiles by product of two spherical harmonic series (SHS) up to order 2 from High Angular Resolution Diffusion-weighted (HARD) MRI data. The coefficients of SHS are estimated and regularized simultaneously by solving a constrained minimization problem. An equivalent but non-constrained version of the approach is also provided to reduce the complexity and increase the efficiency in computation. Moreover we use the Cumulative Residual Entropy (CRE) as a measurement to characterize diffusion anisotropy. By using CRE we can get reasonable results with two thresholds, while the existing methods either can only be used to characterize Gaussian diffusion or need more measurements and thresholds to classify anisotropic diffusion with two fiber orientations. The experiments on HARD MRI human brain data indicate the effectiveness of the method in the recovery of ADC profiles. The characterization of diffusion based on the proposed method shows a consistency between our results and known neuroanatomy.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beaulieu, C.: The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed 15, 435–455 (2002)
Basser, P.J.: Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomd 8, 333–344 (1995)
Basser, P.J., Mattiello, J., Lebihan, D.: Estimation of the effective self-diffusion tensor from the NMR. Spin Echo. J. Magn. Reson. series B 103, 247–254 (1994)
Tuch, D.S., Weisskoff, R.M., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging of the human brain. In: Proc. of the 7th ISMRM, Philadelphia, p. 321 (1999)
Wedeen, V.J., Reese, T.G., Tuchand, D.S., Weigel, M.R., Dou, J.G., Weisskoffand, R.M., Chesler, D.: Mapping fiber orientation spectra in cerebral white matter with fourier transform diffusion MRI. In: Proc. of the 8th ISMRM, Denver, p. 82 (2000)
Chenevert, T.L., Brunberg, J.A., Pipe, J.G.: Anisotropic diffusion in human white matter: Demonstration with MR techniques in vivo. Radiology 177, 401–405 (1990)
Deriche, R., Tschumperlé, D., Lenglet, C.: DT-MRI estimation, regularization and fiber tractography. In: Proc. of the 2nd ISBI, Washington D.C, pp. 9–12 (2004)
Feddern, C., Weickert, J., Burgeth, B.: Level-set methods for tensor-valued images. In: Proc. of the 9th Annual Meeting of ISMRM, Nice, pp. 65–72 (2003)
Parker, G.J.M., Schnabel, J.A., Symms, M.R., Werring, D.J., Baker, G.J.: Nonlinear smoothing for reduction of systematic and random errors in diffusion tensor imaging. Magn. Reson. Med. 11, 702–710 (2000)
Poupon, C., Mangin, J.F., Clark, C.A., Frouin, V., Regis, J., LeBihan, D., Block, I.: Towards inference of human brain connectivity from MR diffusion tensor data. Med. Image Anal. 5, 1–15 (2001)
Vemuri, B.C., Chen, Y., Rao, M., Mareci, T.H.: Automatic fiber tractograph from dti and its validation. In: Proc. of the 1st IEEE ISBI, pp. 505–508 (2002)
Wang, Z., Vemuri, B.C., Chen, Y., Mareci, T.H.: A constrained variational principle for direct estimation and smoothing of the tensor field from complex DWI. IEEE Tran. Med. Imag. 23, 930–940 (2004)
Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys 66(259), 267 (1994)
Alexander, A.L., Hasan, K.M., Lazar, M., Tsuruda, J.S., Parker, D.L.: Analysis of partial volume effects in diffusion-tensor MRI. Magn. Reson. Med. 45, 770–780 (2001)
Frank, L.: Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 45, 935–939 (2001)
Frank, L.: Characterization of anisotropy in high angular resolution diffusion weighted MRI. Magn Reson Med 47, 1083–1099 (2002)
Parker, G.J.M., Alexander, D.C.: Probabilistic monte carlo based mapping of cerebral connections utilising whole-brain crossing fiber information. In: Information Processing in Medical Imaging, Ambleside UK, pp. 684–696 (2003)
Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48, 577–582 (2002)
Chen, Y., Guo, W., Zeng, Q., He, G., Vemuri, B.C., Liu, Y.: Recovery of intra-voxel structure from hard MRI. In: IEEE International Symposium on Biomedical Imaging, Arlington, Virginia, pp. 1028–1031 (2004)
Özarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50, 955–965 (2003)
Alexander, D.C., Barker, G.J., Arridge, S.R.: Detection and modeling of non-gaussian apparent diffusion coefficient profiles in human brain data. Magn. Reson. Med. 48, 331–340 (2002)
Chen, Y., Guo, W., Zeng, Q., Yan, X., Huang, F., Zhang, H., He, G., Vemuri, B.C., Liu, Y.: Estimation, smoothing, and characterization of apparent diffusion coefficient profiles from high angular resolution DWI. In: IEEE Int. Conf. in Computer Vision and Pattern Recognition (CVPR), Washington, D.C, pp. 588–593 (2004)
Rao, M., Chen, Y., Vemuri, B.C., Wang, F.: Cumulative residual entropy: A new measure of information. IEEE Trans. on Info. Theory 50, 1220–1228 (2004)
Rao, M.: More on a new concept of entropy and information. Journal of Theoretical Probability (to appear)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, Y., Guo, W., Zeng, Q., Yan, X., Rao, M., Liu, Y. (2005). Apparent Diffusion Coefficient Approximation and Diffusion Anisotropy Characterization in DWI. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_21
Download citation
DOI: https://doi.org/10.1007/11505730_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26545-0
Online ISBN: 978-3-540-31676-3
eBook Packages: Computer ScienceComputer Science (R0)