Skip to main content

A Novel Parametric Method for Non-rigid Image Registration

  • Conference paper
Information Processing in Medical Imaging (IPMI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3565))

Abstract

This paper presents a novel non-rigid registration method. The main contribution of the method is the modeling of the vorticity (respectively divergence) of the deformation field using vortex (respectively sink and source) particles. Two parameters are associated with a particle: the vorticity (or divergence) strength and the influence domain. This leads to a very compact representation of vorticity and divergence fields. In addition, the optimal position of these particles is determined using a mean shift process. 2D experiments of this method are presented and demonstrate its ability to recover evolving phenomena (MS lesions) so as to register images from 20 patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chorin, A.: Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785–796 (1973)

    Article  MathSciNet  Google Scholar 

  2. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE PAMI 24(5), 603–619 (2002)

    Google Scholar 

  3. Fukanaga, K., Hostetler, L.D.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Info. Theory 21(1), 32–40 (1975)

    Article  Google Scholar 

  4. Leonard, A.: Vortex methods for flow simulation. J. Comp. Phys. 37 (1980)

    Google Scholar 

  5. Lester, H., Arridge, S.: A survey of hierarchical non-linear medical image registration. Pattern Recognition 32, 129–149 (1999)

    Article  Google Scholar 

  6. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximisation of mutual information. IEEE TMI 16(2), 187–198 (1997)

    Google Scholar 

  7. Maintz, J., Viergever, M.A.: A survey of medical image registration. MedIA 2(1), 1–36 (1998)

    Google Scholar 

  8. Smith, S.M.: Fast robust automated brain extraction. HBM 17(3), 143–155 (2002)

    Article  Google Scholar 

  9. Thisted, R.A.: Elements of statistical computing. Chapman and Hall, Boca Raton (1988)

    MATH  Google Scholar 

  10. Toga, A., Thompson, P.: The role of image registration in brain mapping. Image and Vision Computing 19, 3–24 (2001)

    Article  Google Scholar 

  11. Zitova, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 21, 977–1000 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cuzol, A., Hellier, P., Mémin, E. (2005). A Novel Parametric Method for Non-rigid Image Registration. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_38

Download citation

  • DOI: https://doi.org/10.1007/11505730_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26545-0

  • Online ISBN: 978-3-540-31676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics