Skip to main content

Inverse Consistent Mapping in 3D Deformable Image Registration: Its Construction and Statistical Properties

  • Conference paper
Information Processing in Medical Imaging (IPMI 2005)

Abstract

This paper presents a new approach to inverse consistent image registration. A uni-directional algorithm is developed using symmetric cost functionals and regularizers. Instead of enforcing inverse consistency using an additional penalty that penalizes inconsistency error, the new algorithm directly models the backward mapping by inverting the forward mapping. The resulting minimization problem can then be solved uni-directionally involving only the forward mapping, without optimizing in the backward direction. Lastly, we evaluated the algorithm by applying it to the serial MRI scans of a clinical case of semantic dementia. The statistical distributions of the local volume change (Jacobian) maps were examined by considering the Kullback-Liebler distances on the material density functions. Contrary to common belief, the values of any non-trivial Jacobian map do not follow a log-normal distribution with zero mean. Statistically significant differences were detected between consistent versus inconsistent matching when permutation tests were performed on the resulting deformation maps

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thompson, P.M., Toga, A.W.: A framework for computational anatomy. Computing and Visualization in Science 5, 13–34 (2002)

    Article  MATH  Google Scholar 

  2. Grenander, U., Miller, M.I.: Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics 56, 617–694 (1998)

    MATH  MathSciNet  Google Scholar 

  3. Woods, R.P., Mazziotta, J.C., Cherry, S.R.: MRI-PET registration with automated algorithm. J. Comput. Assist. Tomogr. 17(4), 536–546 (1993)

    Article  Google Scholar 

  4. Cachier, P., Rey, D.: Symmetrization of the non-rigid registration problem using inversion-invariant energies: Application to multiple sclerosis. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 472–481. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Rey, D., Subsol, G., Delingette, H., Ayache, N.: Automatic Detection and Segmentation of Evolving Processes in 3D Medical Images: Application to Multiple Sclerosis. In: Kuba, A., Sámal, M., Todd-Pokropek, A. (eds.) IPMI 1999. LNCS, vol. 1613, pp. 154–167. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Christensen, G.E., Johnson, H.J.: Consistent image registration. IEEE Transactions on Image Processing 20, 568–582 (2001)

    Google Scholar 

  7. Ashburner, J., Anderson, J., Friston, K.: High-dimensional image registration using symmetric priors. NeuroImage 9, 619–628 (1999)

    Article  Google Scholar 

  8. Wells, W.M., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1), 35–51 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leow, A. et al. (2005). Inverse Consistent Mapping in 3D Deformable Image Registration: Its Construction and Statistical Properties. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_41

Download citation

  • DOI: https://doi.org/10.1007/11505730_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26545-0

  • Online ISBN: 978-3-540-31676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics