
Inverse Consistent Mapping in 3D Deformable Image 
Registration: Its Construction and Statistical Properties 

Alex Leow1, Sung-Cheng Huang2, Alex Geng1, James Becker3, Simon Davis3, Ar-
thur Toga1, and Paul Thompson1 

1Rm. 4238, 710 Westwood Plaza, LONI, UCLA School of Medicine 
2Dept. of Molecular and Medical Pharmacology, UCLA School of Medicine 

3Dept. of Neurology, Psychiatry, and Psychology, Univ. of Pittsburgh 
aliao@loni.ucla.edu 

Abstract. This paper presents a new approach to inverse consistent image reg-
istration.  A uni-directional algorithm is developed using symmetric cost func-
tionals and regularizers. Instead of enforcing inverse consistency using an addi-
tional penalty that penalizes inconsistency error, the new algorithm directly 
models the backward mapping by inverting the forward mapping. The resulting 
minimization problem can then be solved uni-directionally involving only the 
forward mapping, without optimizing in the backward direction. Lastly, we 
evaluated the algorithm by applying it to the serial MRI scans of a clinical case 
of semantic dementia. The statistical distributions of the local volume change 
(Jacobian) maps were examined by considering the Kullback-Liebler distances 
on the material density functions. Contrary to common belief, the values of any 
non-trivial Jacobian map do not follow a log-normal distribution with zero 
mean. Statistically significant differences were detected between consistent 
versus inconsistent matching when permutation tests were performed on the re-
sulting deformation maps  

1   Introduction 

Non-linear image registration is a well-established field in medical imaging with many 
applications in functional and anatomic brain mapping, image guided surgery, and 
multimodality image fusion [1-3].  The goal of image registration is to align, or spa-
tially normalize, one image to another. In multisubject studies, registration reduces 
subject-specific anatomic differences by deforming individual images onto a popula-
tion average brain template. Using a similar procedure, maps visualizing structural 
brain change over time can be generated by deforming baseline scans onto subsequent 
scans of the same subject, and using the deformation map to quantify local changes. 
To formulate the image registration problem mathematically, we denote the two im-
ages to be registered as T and S (both defined on an image domain Ω). We seek to 
estimate a transformation  so that S(h(x)) is “closest”  to in terms of certain 
matching criteria. Ideally, this transformation mapping h should be smooth, one-to-
one, and differentiable (i.e., a diffeomorphism). Conventionally, researchers in the 
field of non-linear image registration use the notation u=(u

h )(xT

x, uy, uz), the displacement 



vector field away from the identity map, to represent the transformation h (i.e., 
). The inverse map h)()( xuxxh −=

  

E T,S( )=

-1 of h (i.e., h-1(h(x))=x for all x) thus maps the 
target to the source image. We will also use the notation u-1 to denote the displacement 
field of the inverse map h-1.  

Ω
∫
� 

To make the transformation smooth, one-to-one, and differentiable, a regularizing 
constraint on the displacement field is needed. Thus, the problem of image registra-
tion is often cast as a minimization problem with a total cost functional E expressed 
in general as E=EM(S,T)+R(h), where EM is the matching criterion cost function, and 
R(h) is the regularizing constraint on the transformation. 
Intuitively, the problem of image registration is symmetric, i.e., the correspondences 
established between the two images should not depend on the order we use to com-
pare the two images. However, early approaches for non-linear image registration 
were not symmetric and various terms (e.g., source, target, template, study, and refer-
ence) have been used to describe the direction of this comparison. In this paper, we 
will adopt the term source or S to describe the floating/deforming image and the term 
target or T to describe the image that the source image is deformed to match. This 
dependence on the direction of comparison not only complicates the notation but also 
has serious disadvantages.  Firstly, the deformation field depends on which image is 
assigned the source and which image the target. This dependence can be termed in-
verse inconsistency as inconsistency arises if we switch the order of source and target. 
Secondly, as pointed out in [4], these inversely inconsistent approaches penalize the 
expansion of image regions more than the shrinkage of image regions. This imbalance 
in the penalty was also noticed and discussed in another paper [5] by the same group 
in which shrinking brain lesions were found to be easier to detect than expanding ones 
using inversely inconsistent methods. Thus, conventional inverse-inconsistent non-
linear registration techniques may be problematic in applications where the Jacobian 
of the transformation h is interpreted as measuring tissue loss or expansion, a step 
commonly performed in computational neuroanatomy (e.g., in tensor-based mor-
phometry). 
One of the first approaches for inverse consistent registration [6] symmetrized not 
only the matching cost functional, but also the regularization of the displacement.  
Using the sum of squared differences of the intensities as the matching cost func-
tional, the following total cost function E was proposed: 

S h(x)( )− T(x)
2
dx + λR h( )

E1
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+ T h−1(x)( )− S(x)

2
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Ω
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Here λ is a positive scalar weighting of the regularizers applied to the forward and 
inverse mappings. The above cost function is symmetric and does not depend on the 
order of T and S, i.e., E(T,S) =E(S,T). To solve (1) numerically, [6] solved for h and g 
separately as follows and additional inverse consistency constraints were added so 
that g numerically realized h-1. 



Eh T,S( )= S h(x)( )− T(x)
2
dx

Ω
∫ + λR h( )+ ρ h − g( )−1 2

dx
Ω
∫ ;

Eg T,S( )= T g(x)( )− S(x)
2
dx

Ω
∫ + λR g( )+ ρ g − h( )−1 2

dx .
Ω
∫

  

(2) 

Iterative gradient descent methods can be employed and the numerical algorithm for 
minimizing eq. (2) can be summarized as follows. At initialization, both h and g are 
set to be the identity map. At each time step, the gradient descent of Eh is computed to 
update h while fixing the map g, and similarly Eg is used to update g while fixing the 
map h. This avoids the highly nonlinear nature of the original minimization problem 
eq. (1) in which both the forward and backward mappings are involved and need to 
be optimized while maintaining the inverse relation between them.  
Although the alternative formulation eq. (2) was extensively tested, with good ex-
perimental results, it has some disadvantages compared to the original formulation in 
eq. (1). Firstly, the algorithm proposed to solve eq. (2) is essentially a two step strat-
egy and creates a lagging-behind situation in estimating h and g. Either h and g has to 
be alternately fixed (i.e., the two maps are not estimated simultaneously). Moreover, 
an extra weighting parameter for the inverse consistency constraints has to be consid-
ered and was tuned case-by-case in [6]. 

2   Method 

2.1 Inverting gradient descent direction    

 We seek to solve the original symmetric formulation for non-linear registration in eq. 
(1) instead of the modified formulation in eq. (2). To this end, we propose to directly 
couple the backward and forward mappings, allowing all driving body forces to be 
combined in the forward direction.  As a result, the corresponding minimization prob-
lem can be optimized in a unidirectional fashion, i.e. by considering the forward map-
ping only. Thus, the proposed algorithm can be thought of as a unidirectional proce-
dure with embedded inverse consistency.   

To simplify the derivation of this procedure, we will illustrate it using the sum of 
squared difference (SSD) as the matching cost functional. This can easily be extended 
to other intensity/feature-based cost functionals. As mentioned before, we will con-
vert the gradient descent direction involving the backward mapping (E2 in eq. (1)) to 
a corresponding gradient descent direction in the forward direction.  More precisely, 
we wish to update h and h-1 by perturbing the mappings from the previous time step 
in a descent direction with respect to the total cost functional E. 

h → h + εη1 + εη2 ; h−1 → h−1 + εξ1 + εξ2 .  (3) 

Here, ε is an infinitesimally small positive number and η1 and ξ1 are vector fields 
that represent the gradient descent direction of E1 in eq. (1) in the forward and back-



ward direction respectively, with η2 and ξ2 similarly defined for the term E2.  Notice 
that the terms η1 and ξ2 can be computed using standard calculus. Formally, we can 
write η1 and ξ2 as follows 

η1(x) = S h(x)( )− T(x)( )∇S h(x)( )+ λ∇R h( );

ξ2 (x) = T h−1(x)( )− S(x)( )∇T h−1(x)( )+ λ∇R h−1( ).
 . 

(4) 

 Here the gradient operator applied to the regularizer denotes the gradient descent 
direction of the regularizer (or a regularized/smoothed body force). In order to nu-
merically compute (3), we need to solve for η2 and ξ1 using eqs. (3) and (4). To this 
end, we first utilize the inverse relationship given in eq. (3)  

  h
−1 + εξ1 + εξ2( )D h + εη1 + εη2( )= id  . (5) 

where id is the identity mapping. By expanding (5) using Taylor’s expansion and 
collecting up to first order terms of ε, we obtain 

Dh−1 h(x)( ) η1 (x) + η2(x){ }= −ξ1 h x( )( )−ξ2 h x( )( ) .  (6) 

Here D denotes the Jacobian matrix operator. Using the relation-

ship:( ) , derived by differentiating the identity rela-

tion , we obtain the following alternative form to (6)  

D h(x)( ) −1
= Dh−1 h(x)(

h−1 h( )= id
)

η1 (x) + η2(x) = −D h(x)( ) ξ1 h x( )( )+ξ2 h x( )( ){ }.  (7) 

With (7), we can now express η2 and ξ1 using the known quantities ξ2 and η1 

η2 (x) = −D h(x)( )ξ2 h x( )( );

ξ1 (x) = −D h−1(x)( )η1 h−1 x( )( ).
  

(8) 

With all the quantities known, we now have a recipe for minimizing the symmetric 
forward-backward problem (1) using an iterative approach with the updating formu-
lae (3). Moreover, as the two updating formulae in (3) are designed to be consistent 
with each other, we can simply update in the forward direction (first formula) without 
using the backward updating formulae at all. Notice that with eq. (8), the inversion of 
a body force from the backward direction to the forward direction can be carried out 
using only the forward mapping h (without involving h-1). This property is desirable 
due to the unavoidable numerical errors incurred when inverting between h and h-1.  

Thus, at each time step of the gradient descent method, we sum up the total for-
ward body force by combining the forward body force and the inverted backward 
body force obtained by applying (8). To evaluate (8) numerically, interpolations are 
necessary and we use a bi-linear or tri-linear technique to interpolate the backward 
body force in the non-grid point position h(x). 

In this paper, the linear elastic operator is chosen as in [6] for the regularizer 



R(u) = −α∆u − β∇ ∇ ⋅ u( )∫ 2
dx .  (9) 

where ∆ is the Laplacian and α and β are the Lamé constants (both set to be 1.0). The 
Fast Fourier transform technique (FFT) is applied to parameterize the displacement 
field. A multi-resolution minimization scheme can then be implemented in the fre-
quency domain.  

2.2 Statistical properties of deformation maps  

In this section, we discuss the statistical properties of the deformation maps arising 
from non-linear image registration. In tensor-based morphometry, the Jacobian de-
terminants of deformation maps are used to index local volume compressions or dila-
tions and their distribution is typically assumed to be log-normal [7]. However, we 
now show that the determinant of the Jacobian operator applied to any bijective (one-
to-one and onto) globally volume-preserving mapping h cannot have a log-normal 
distribution with zero mean. To this end, let us denote the Jacobian matrix of a trans-
formation h as Dh (with the (i,j)-th element ∂h j ∂xi

), and the local volume 
loss/expansion map (Jacobian map) can thus be defined as J(x) = Dh(x) . Notice 
that J encodes the local volume change of the source with respect to the target image, 
and may be considered to reside on the target reference frame. Since h is a diffeo-
morphic and bijective mapping from Ω to itself, we obtain the following using a 
change of variable    

1
Ω

Dh(x) dx
Ω∫ =

y= h(x ) 1
Ω

dy
Ω∫ =1. (10) 

Here, the first integral should be evaluated with respect to the target domain and the 
second integral with respect to the source domain, and |Ω| is the total volume of Ω. 
Given eq. (10), we can define a probability density function (PDF) P on Ω as 
P(x) = Dh(x) Ω  as it integrates to 1. Let us also use Q(x) = 1 Ω  to denote the 
PDF of the uniform distribution on Ω. Then, using the relation log(1/a)=-log(a), we 
can compute the mean of log(J) in the target reference frame on Ω as follows 

1
Ω

log Dh(x) dx
Ω∫ = −

1
Ω

log
1 Ω

Dh(x) Ω

 

 
 

 

 
 dx

Ω∫

= − Qlog Q
P

dx
Ω∫ = −KL(Q,P).

 

(11) 

Here KL, the non-negative asymmetric Kullback-Leibler (K-L) distance, between 
two PDF’s X and Y is defined as 



KL(X,Y ) = EX
X
Y

 
  

 
  = X log X

Y
dx

Ω∫ ≥ 0;

KL(X,Y ) ≠ KL(Y,X); KL(X,Y ) = 0 iff X ≡ Y .

 
(12) 

Eq. (12) suggests that calculating the mean of a log-transformed volume change 
map is the same as computing the negative K-L distance between Q and P, and is 
always non-positive (zero only when J equals 1 everywhere, i.e., when the flow is 
incompressible). By contrast, let us also show that the log transform 
of  , the volume change map pulled back onto the source reference 
frame, has a mean larger than zero, unless the flow is incompressible.  Thus, the 
pulled-back Jacobian map does not have a log-normal distribution with zero mean 
either. 

J D h−1 = J(h−1(x))

1
Ω

log J h−1(y)( )dy
Ω∫ =

y= h(x ) 1
Ω

logJ(x)( ) Dh dx
Ω∫

=
1
Ω

log Dh(x)( )Dh dx
Ω∫ =

Dh
Ω

log
Dh(x) Ω

1 Ω

 

 
 

 

 
 dx

Ω∫

= P log P
Q

dx
Ω∫ = KL(P,Q).

 

(13) 

Similarly, calculating the mean of the pulled-back logged volume change map is 
equivalent to computing the K-L distance between P, and Q, and is always non-
negative. Conventional log-normal modeling of the Jacobian distributions may there-
fore be less appropriate than non-parametric estimation, as illustrated in the Results.  

3   Results 

3D T1-weighted magnetic resonance images (MRI) of a 57 year-old male patient 
diagnosed with semantic dementia were obtained using a gradient echo acquisition 
(TR 25ms, TE 5ms, slice thickness 1.5mm, FOV 24x18cm, flip angle 40 degrees, no 
gaps). A total of four serial scans were obtained (baseline scan in 02/1993; follow-up 
scans in 10/1994, 02/1996, and 08/1999). The baseline (target) and the final follow-
up (source) scans were used to evaluate the proposed approach. The two scans were 
first rigidly aligned and re-sliced to an isotropic volume of size 180×180×180 (a 
voxel = 1mm3). The proposed inverse consistent registration algorithm was used to 
deform the source back to the target by maximizing the mutual information (MI) [8] 
between the deforming source and target images. This spatial normalization of scans 
over time allowed local tissue change to be estimated as mentioned in previous sec-
tions. A multi-resolution scheme  starting from the 32×32×32 FFT resolution was 
used (λ=1e-4; time step=3e-6), and numerical convergence was checked every 20 
iterations (convergence criteria was met when the MI failed to increase by 0.001 after 
one iteration). 40 iterations were computed in each FFT resolution before the resolu-



tion was increased by a factor of 2 (with the time step decreased to one-tenth) in each 
dimension. The top panel of Fig. 1 plots the target image (baseline scan) from an 
angle showing temporal lobes bilaterally, the second panel the source image from the 
same angle. The MRI scans show existing left temporal lobe atrophy (LT) with rela-
tive preservation of the right temporal lobe (RT). However, closer inspection of the 
Jacobian map (Fig. 2) shows active atrophy in the right temporal lobe, as well as 
bilateral caudate (RC, LC), putamen (RP, LP), and thalamus (RT, LT) tissue loss, 
while no active atrophy was detected in the left temporal lobe during the same time 
period (not shown here). Fig. 3 plots the values of MI and regularizer versus itera-
tions in the forward and backward direction using (1) the proposed inverse consistent 
approach, and (2) an inconsistent approach (minimizing only the term E1 in eq. (1)). 
The proposed consistent algorithm achieved not only higher MI values, but also 
lower regularizer values. 

In order to validate the inverse consistency property of the proposed algorithm, we 
compared the deformation with that obtained by switching the source/target. Ideally, 
the deformation should not depend on this order, and thus inverse consistency can be 
assessed by looking at the difference (Table 1) between the deformation pair. For 
comparison, the corresponding errors using the inconsistent algorithm are also re-
ported. Notice that the proposed algorithm yielded smaller errors in all aspects, and 
on average decreased the mean error to about one-seventh compared to the inconsis-
tent algorithm. 

We then examined the statistical properties of the log(J) values. The left panel in 
the first row of Fig. 4 shows the histogram of the log(J) values under the proposed 
inverse consistent mapping (mean –0.0011; skewness –0.01657), and the right panel 
the corresponding histogram using inconsistent matching (mean –0.0017; skewness –
0.648). Notice the slight visual difference in these two histograms. We first tested if 
the log(J) distribution is symmetric around mean zero. To this end, a permutation test 
was performed where 10,000 samples were generated by randomly flipping the sign 
of each element in the observed distribution (under the null hypothesis that the ob-
served is symmetric around zero). The test statistic was the mean value of the re-
sampled distribution. No re-sampled test statistic (maximum 7.67e-5; minimum –
8.23e-5) was as extreme as the observed statistic, and thus the null hypothesis was 
rejected with statistical significance.  We then relaxed the null hypothesis and tested 
the symmetry of log(J) distribution using another permutation test (random flipping 
around the observed mean –0.0011) with skewness as the test statistic. The left panel 
in the second row of Fig. 4 shows the histogram of the re-sampled statistics. The one-
sided p-value is 0.067, and thus the null hypothesis  (symmetric around its negative 
mean) cannot be rejected at the 5% significance level. By contrast, a similar skewness 
permutation test performed on the log(J) values under the inconsistent mapping 
yielded a p<0.0001. Thus, a statistically significant skewness was detected in the case 
of inconsistent mapping compared to its inverse consistent counterpart.   



 

Fig. 1.  The first row shows the baseline MRI scan of a patient diagnosed with semantic de-
mentia. The second row shows the follow-up MRI scan of the same patient in which ventricle 
(V) dilation and copus callosum (C) shape change can be observed. The third row shows the 
follow-up MRI scan deformed to match the baseline scan using the proposed inverse consis-
tency algorithm with maximization of mutual information (see text).  

Finally, we examined the differences in the log(J) distributions obtained from in-
verse consistent versus inconsistent mappings. As discussed in previous sections, one 
would argue that, by equally penalizing positive and negative log(J) values, an in-
verse consistent mapping would shift the mean log(J) value rightward (less negative). 
We formally tested the statistical significance of this shift using a third permutation 
test (right panel in the second row of Fig. 4). The test statistic in this case was the 
difference of the mean log(J) values between consistent and inconsistent mappings 
with the observed statistic 6.066e-4.  10,000 samples of this test statistic were calcu-
lated by generating two re-sampled distributions using random shuffling of each 
element in the two observed  distributions (under the null hypothesis that the two 
distributions are identical and share the same mean). Again, not a single re-sampled 



test statistic (max 9.44e-5, min –8.73e-5) was as extreme as the observed, and thus a 
statistically significant difference was detected between the two observed distribu-
tions. 

 

Fig. 2. 3D Jacobian map of the semantic dementia patient shows the active right temporal lobe 
atrophy (left panel), and deep nuclei involvement (right panel; see text). 

Table 1. Statistics of inverse consistency error. * denotes the displacement/deformation 
obtained by switching the order of the source/target. The numbers are reported with respect to 
the 64x64x64 resolution of the FFT parameterization of the displacement.  

Forward mapping (inverse consistent) 
 | ux-ux* | | uy-uy* | | uz-uz* | | h-h* | 

Maximum 0.3893 0.8290 0.4345 0.8616 
Mean 0.0047 0.0071 0.0049 0.0115 

Backward mapping (inverse consistent) 
 | ux

-1-ux
-1*| | uy

-1-uy
-1*| | uz

-1-uz
-1*| | h-1-h-1*| 

Maximum 0.2751 0.8009 0.4145 0.8107 
Mean 0.0048 0.0071 0.0047 0.0115 

Forward mapping (inverse inconsistent) 
 | ux-ux* | | uy-uy* | | uz-uz* | | h-h* | 

Maximum 0.8343 0.8894 0.9616 0.9617 
Mean 0.0323 0.0297 0.0360 0.0685 

Backward mapping (inverse inconsistent) 
 | ux

-1-ux
-1*| | uy

-1-uy
-1*| | uz

-1-uz
-1*| | h-1-h-1*| 

Maximum 0.8499 0.9009 0.9884 0.9579 
Mean 0.0322 0.0288 0.0362 0.0674 



 
Fig. 3. The Mutual Information (the first row) and the regularizer (the second row) are plotted 
against the iteration number (x axis) in both the forward (left panel) and backward (right panel) 
direction. The transient increase of the values around iteration 40 is due to the upsampling of 
the displacement FFT parameterization. 

 



 
Fig. 4. Skewness of Logged Jacobian distributions. The first row shows the histogram of the 
log(J) values of the inverse consistent mapping constructed using the proposed algorithm (left 
panel), and the corresponding histogram using the inconsistent matching (right panel) . Second 
Row: A permutation test is performed to determine if the consistent matching yields log(J) 
values  symmetric around its mean (left panel shows the histogram of the re-sampled skewness 
statistic) with a one-sided p-value of 0.067. Another permutation test is performed to determine 
if the two distributions in the first row are statistically different. The right panel shows the 
histogram of the re-sampled test statistic (the values scaled by 104) where no re-sampled statis-
tic is as extreme as the observed (i.e., p<0.0001).  

4   Conclusion 

In this paper, we developed an inverse consistent image registration approach by 
applying variation calculus principles to the forward mapping only. We characterized 
the statistical properties of the Jacobian maps, both empirically and by applying the 
Kullback-Liebler distance to the set of material density functions in both target and 
source coordinates. We showed that the mean value of any log Jacobian map is al-
ways negative except for the trivial case where the Jacobian map is identically one on 
the whole image domain (incompressible flow). By contrast, any non-trivial log Jaco-
bian map pulled back to the source coordinate must have a positive mean value. Thus, 
contrary to common belief, the values of any non-trivial Jacobian map do not follow a 
log normal distribution with zero mean. We also showed that compared to inconsis-
tent matching, consistent matching reduces the skewness and increases the mean 
value of the log(J) distribution (making it more symmetric and thus allowing more 



unbiased detection of expanding and shrinking regions). Moreover, the statistical 
theory of these distributions has strong ties with formulations in information theory. 
Our conclusion has important consequences when performing statistical tests on maps 
of tissue change in both longitudinal and inter subject/group studies. 
We also proposed a new algorithm that implements consistent matching in an intui-
tive manner without introducing extra penalty functions/parameters. Furthermore, the 
proposed algorithm provides a general recipe for inverting body forces back and forth 
between the forward and backward directions, and thus is applicable to any image 
registration schemes that compute displacement fields using incremental updating. 
We tested the proposed algorithm using longitudinal MRI images in a case of seman-
tic dementia and demonstrated promising results for tracking atrophic processes in the 
brain. 
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