Abstract
We address the problem of the segmentation of cerebral white matter structures from diffusion tensor images. Our approach is grounded on the theoretically well-founded differential geometrical properties of the space of multivariate normal distributions. We introduce a variational formulation, in the level set framework, to estimate the optimal segmentation according to the following hypothesis: Diffusion tensors exhibit a Gaussian distribution in the different partitions. Moreover, we must respect the geometric constraints imposed by the interfaces existing among the cerebral structures and detected by the gradient of the diffusion tensor image. We validate our algorithm on synthetic data and report interesting results on real datasets. We focus on two structures of the white matter with different properties and respectively known as the corpus callosum and the corticospinal tract.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet, M.: MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology, 401–407 (1986)
Basser, P., Mattiello, J., Le Bihan, D.: MR diffusion tensor spectroscopy and imaging. Biophysica, 259–267 (1994)
Tschumperlé, D., Deriche, R.: Variational frameworks for DT-MRI estimation, regularization and visualization. In: Proc. ICCV, pp. 116–122 (2003)
Mori, S., Crain, B., Chacko, V., Zijl, P.V.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology 45, 265–269 (1999)
Behrens, T., Johansen-Berg, H., Woolrich, M., Smith, S., Wheeler-Kingshott, C., Boulby, P., Barker, G., Sillery, E., Sheehan, K., Ciccarelli, O., Thompson, A., Brady, J., Matthews, P.: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neuroscience 6, 750–757 (2003)
Lenglet, C., Deriche, R., Faugeras, O.: Inferring white matter geometry from diffusion tensor MRI: Application to connectivity mapping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 127–140. Springer, Heidelberg (2004)
Corouge, I., Gouttard, S., Gerig, G.: A statistical shape model of individual fiber tracts extracted from diffusion tensor MRI. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 671–679. Springer, Heidelberg (2004)
Zhukov, L., Museth, K., Breen, D., Whitaker, R., Barr, A.: Level set segmentation and modeling of DT-MRI human brain data. Journal of Electronic Imaging 12(1), 125–133 (2003)
Wiegell, M., Tuch, D., Larson, H., Wedeen, V.: Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging. NeuroImage 19, 391–402 (2003)
Feddern, C., Weickert, J., Burgeth, B., Welk, M.: Curvature-driven PDE methods for matrix-valued images. Technical Report 104, Department of Mathematics, Saarland University, Saarbrücken, Germany (2004)
Rousson, M., Lenglet, C., Deriche, R.: Level set and region based surface propagation for diffusion tensor MRI segmentation. In: Proc. Computer Vision Approaches to Medical Image Analysis, ECCV Workshop, pp. 123–134 (2004)
Wang, Z., Vemuri, B.C.: Tensor field segmentation using region based active contour model. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 304–315. Springer, Heidelberg (2004)
Wang, Z., Vemuri, B.: An affine invariant tensor dissimilarity measure and its application to tensor-valued image segmentation. In: Proc. CVPR, pp. 228–233 (2004)
Lenglet, C., Rousson, M., Deriche, R.: Segmentation of 3D probability density fields by surface evolution: Application to diffusion MRI. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 18–25. Springer, Heidelberg (2004)
Jonasson, L., Bresson, X., Hagmann, P., Cuisenaire, O., Meuli, R., Thiran, J.: White matter fiber tract segmentation in DT-MRI using geometric flows. Medical Image Analysis (2004) (in press)
Lenglet, C., Rousson, M., Deriche, R., Faugeras, O.: Statistics on multivariate normal distributions: A geometric approach and its application to diffusion tensor MRI. Research Report 5242, INRIA (2004)
Rao, C.: Information and accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81–91 (1945)
Burbea, J., Rao, C.: Entropy differential metric, distance and divergence measures in probability spaces: A unified approach. Journal of Multivariate Analysis 12, 575–596 (1982)
Skovgaard, L.: A Riemannian geometry of the multivariate normal model. Technical Report 81/3, Statistical Research Unit, Danish Medical Research Council, Danish Social Science Research Council (1981)
Burbea, J.: Informative geometry of probability spaces. Expositiones Mathematica 4, 347–378 (1986)
Eriksen, P.: Geodesics connected with the fisher metric on the multivariate manifold. Technical Report 86-13, Inst. of Elec. Systems, Aalborg University (1986)
Calvo, M., Oller, J.: An explicit solution of information geodesic equations for the multivariate normal model. Statistics and Decisions 9, 119–138 (1991)
Förstner, W., Moonen, B.: A metric for covariance matrices. Technical report, Stuttgart University, Dept. of Geodesy and Geoinformatics (1999)
Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26(3), 735–747 (2005)
Fletcher, P., Joshi, S.: Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors. In: Proc. Computer Vision Approaches to Medical Image Analysis, ECCV Workshop, pp. 87–98 (2004)
Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Research Report 5255, INRIA (2004)
Atkinson, C., Mitchell, A.: Rao’s distance measure. Sankhya: The Indian Journal of Stats 43, 345–365 (1981)
Karcher, H.: Riemannian centre of mass and mollifier smoothing. Comm. Pure Appl. Math 30, 509–541 (1977)
Pennec, X.: Probabilities and statistics on Riemannian manifolds: A geometric approach. Research Report 5093, INRIA (2004)
Charpiat, G., Faugeras, O., Keriven, R.: Approximations of shape metrics and application to shape warping and shape statistics. Research Report 4820, INRIA (2003)
Rousson, M.: Cues integrations and front evolutions in image segmentation. PhD thesis, Université de Nice-Sophia Antipolis (2004)
Leclerc, Y.: Constructing simple stable description for image partitioning. International Journal of Computer Vision 3, 73–102 (1989)
Zhu, S., Yuille, A.: Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 884–900 (1996)
Paragios, N., Deriche, R.: Geodesic active regions: a new paradigm to deal with frame partition problems in computer vision. Journal of Visual Communication and Image Representation 13, 249–268 (2002)
Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: Algorithms based on the Hamilton-Jacobi formulation. Journal of Computational Physics 79, 12–49 (1988)
Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image Processing 10, 266–277 (2001)
Zhao, H., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. Journal of Computational Physics 127, 179–195 (1996)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. The International Journal of Computer Vision 22, 61–79 (1997)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. In: Proc. ICCV, pp. 259–268 (1987)
Rousson, M., Deriche, R.: A variational framework for active and adaptative segmentation of vector valued images. In: Proc. IEEE Workshop on Motion and Video Computing, pp. 56–62 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lenglet, C., Rousson, M., Deriche, R., Faugeras, O., Lehericy, S., Ugurbil, K. (2005). A Riemannian Approach to Diffusion Tensor Images Segmentation. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_49
Download citation
DOI: https://doi.org/10.1007/11505730_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26545-0
Online ISBN: 978-3-540-31676-3
eBook Packages: Computer ScienceComputer Science (R0)