Abstract
This paper presents a novel method for denoising MR images that relies on an optimal estimation, combining a likelihood model with an adaptive image prior. The method models images as random fields and exploits the properties of independent Rician noise to learn the higher-order statistics of image neighborhoods from corrupted input data. It uses these statistics as priors within a Bayesian denoising framework. This paper presents an information-theoretic method for characterizing neighborhood structure using nonparametric density estimation. The formulation generalizes easily to simultaneous denoising of multimodal MRI, exploiting the relationships between modalities to further enhance performance. The method, relying on the information content of input data for noise estimation and setting important parameters, does not require significant parameter tuning. Qualitative and quantitative results on real, simulated, and multimodal data, including comparisons with other approaches, demonstrate the effectiveness of the method.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Awate, S., Whitaker, R.: Higher-order image statistics for unsupervised, information-theoretic, adaptive, image filtering. To appear in Proc. IEEE Int. Conf. Computer Vision Pattern Recog. (2005)
Collins, D., Zijdenbos, A., Kollokian, V., Sled, J., Kabani, N., Holmes, C., Evans, A.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imag. 17(3), 463–468 (1998)
Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)
de Silva, V., Carlsson, G.: Topological estimation using witness complexes. In: Symposium on Point-Based Graphics (2004)
Dougherty, E.: Random Processes for Image and Signal Processing. Wiley, Chichester (1998)
Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley, Chichester (2001)
Fan, A., Wells, W., Fisher, J., Çetin, M., Haker, S., Mulkern, R., Tempany, C., Willsky, A.: A unified variational approach to denoising and bias correction in mr. In: Info. Proc. Med. Imag., pp. 148–159 (2003)
Gerig, G., Kikinis, R., Kubler, O., Jolesz, F.: Nonlinear anisotropic filtering of mri data. IEEE Trans. Med. Imag. 11(2), 221–232 (1992)
Healy, D., Weaver, J.: Two applications of wavelet transforms in magnetic resonance imaging. IEEE Trans. Info. Theory 38(2), 840–860 (1992)
Hilton, M., Ogden, T., Hattery, D., Jawerth, G., Eden, B.: Wavelet denoising of functional MRI data, pp. 93–114 (1996)
Lysaker, M., Lundervold, A., Tai, X.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Imag. Proc. (2003)
Mangin, J.: Entropy minimization for automatic correction of intensity nonuniformity. In: IEEE Work. Math. Models Biomed. Imag. Anal., pp. 162–169 (2000)
Nowak, R.: Wavelet-based rician noise removal for magnetic resonance imaging. IEEE Trans. Imag. Proc. 8, 1408–1419 (1999)
Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Heidelberg (2003)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)
Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.: Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. Imag. Proc. 12(11), 1338–1351 (2003)
Scott, D.: Multivariate Density Estimation. Wiley, Chichester (1992)
Shannon, C.: A mathematical theory of communication. Bell System Tech. Journal 27, 379–423 (1948)
Sled, J., Zijdenbos, A., Evans, A.: A nonparametric method for automatic correction of intensity nonuniformity in mri data. IEEE Trans. Med. Imag. 17, 87–97 (1998)
Viola, P., Wells, W.: Alignment by maximization of mutual information. In: Proc. Int. Conf. Comp. Vision, pp. 16–23 (1995)
Weissman, T., Ordentlich, E., Seroussi, G., Verdu, S., Weinberger, M.: Universal discrete denoising: Known channel. HP Labs Tech. Report HPL-2003-29 (2003)
Wells, W., Grimson, E., Kikinis, R., Jolesz, F.: Adaptive segmentation of mri data. In: Proc. Int. Conf. on Comp. Vision, pp. 59–69 (1995)
Yang, C., Duraiswami, R., Gumerov, N., Davis, L.: Improved fast gauss transform and efficient kernel density estimation. In: Proc. Int. Conf. Comp. Vision, pp. 464–471 (2003)
Zhang, Y., Brady, M., Smith, S.: Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imag. 20(1) (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Awate, S.P., Whitaker, R.T. (2005). Nonparametric Neighborhood Statistics for MRI Denoising. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_56
Download citation
DOI: https://doi.org/10.1007/11505730_56
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26545-0
Online ISBN: 978-3-540-31676-3
eBook Packages: Computer ScienceComputer Science (R0)