Skip to main content

An (nt)-out-of-n Threshold Ring Signature Scheme

  • Conference paper
Information Security and Privacy (ACISP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3574))

Included in the following conference series:

  • 1398 Accesses

Abstract

In CRYPTO2002, Bresson, Stern, and Szydlo proposed a threshold ring signature scheme. Their scheme uses the notion of fair partition and is provably secure in the random oracle model. Their scheme is efficient when the number t of signers is small compared with the number n of group members, i.e., \(t={\mathcal O}(\log{n})\) (we call this scheme BSS scheme). However, it is inefficient when t is ω(logn).

In this paper, we propose a new threshold ring signature scheme which is efficient when the number of signers is large compared with the number n of group members, i.e., when the number t of non-signers in the group members is small compared with n. This scheme is very efficient when \(t={\mathcal O}(\log{n})\). This scheme has a kind of dual structure of BSS scheme which is inefficient when the number of signers is large compared with the number of group members. In order to construct our scheme, we modify the trap-door one-way permutations in the ring signature scheme, and use the combinatorial notion of fair partition. This scheme is provably secure in the random oracle model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Yuster, R., Zwick, U.: Color-coding. Electronic Colloquium on Computational Complexity (ECCC) 1, 009 (1994) Full paper appears in J.ACM 42(4), 844-856 (July 1995)

    Google Scholar 

  2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Barić, N., Pfizmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)

    Google Scholar 

  4. Bresson, E., Stern, J., Szydlo, M.: Threshold Ring Signatures and Applications to Ad-hoc Groups. In: Yung [15], pp. 465–480

    Google Scholar 

  5. Camenisch, J., Lysyanskaya, A.: Efficient revocation of anonymous group membership. In: Yung [15], pp. 465–480

    Google Scholar 

  6. Camenisch, J., Michels, M.: Separability and efficiency for generic group signature schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 106–121. Springer, Heidelberg (1999)

    Google Scholar 

  7. Camenisch, J., Stadler, M.: Efficient group signatures schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)

    Google Scholar 

  8. Chaum, D., van Heijst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

    Google Scholar 

  9. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

    Google Scholar 

  10. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Kim, S., Park, S., Won, D.: Convertible group signatures. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 311–321. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  12. Kim, S., Park, S., Won, D.: Group signatures for hierarchical multigroups. In: Okamoto, E. (ed.) ISW 1997. LNCS, vol. 1396, pp. 273–281. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. Petersen, H.: How to convert any digital signature scheme into a group signature. In: Christianson, B., Lomas, M. (eds.) Security Protocols 1997. LNCS, vol. 1361, pp. 67–78. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Yung, M. (ed.): CRYPTO 2002. LNCS, vol. 2442. Springer, Heidelberg (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Isshiki, T., Tanaka, K. (2005). An (nt)-out-of-n Threshold Ring Signature Scheme. In: Boyd, C., González Nieto, J.M. (eds) Information Security and Privacy. ACISP 2005. Lecture Notes in Computer Science, vol 3574. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11506157_34

Download citation

  • DOI: https://doi.org/10.1007/11506157_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26547-4

  • Online ISBN: 978-3-540-31684-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics