Abstract
We analyze an algebraic representation of \(\mathcal{AES}\) 128 as an embedding in \(\mathcal{BES}\), due to Murphy and Robshaw. We present two systems of equations S ⋆ and K ⋆ concerning encryption and key generation processes. After some simple but rather cumbersome substitutions, we should obtain two new systems \({\mathcal{C}}_{1}\) and \({\mathcal{C}}_{2}\). \({\mathcal{C}}_{1}\) has 16 very dense equations of degree up to 255 in each of its 16 variables. With a single pair (p,c), with p a cleartext and c its encryption, its roots give all possible keys that should encrypt p to c. \({\mathcal{C}}_{2}\) may be defined using 11 or more pairs (p,c), and has 16 times as many equations in 176 variables. K ⋆ and most of S ⋆ is invariant for all key choices.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, New York (1992)
Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)
Daemen, J., Rijmen, V.: AES proposal: Rijndael (Version 2). NIST AES (1999). Website, http://csrc.nist.gov/encryption/aes
Daemen, J., Rijmen, V.: The design of Rijndael: AES - The Advanced Encryption Standard. Springer, Heidelberg (2002)
National Institute of Standards and Technology. Advanced Encryption Standard. In: FIPS, November 26, vol. 197 (2001)
Ferguson, N., Schroeppel, R., Whiting, D.: A simple algebraic representation of Rijndael. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 103–111. Springer, Heidelberg (2001)
Grayson, D.R., Stillman, M.E.: Macaulay 2, a software system for research in algebraic geome= try, Available at, http://www.math.uiuc.edu/Macaulay2/
Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 2-0-3. A Computer Algebra System for= Polynomial Computations. Center for Computer Algebra, University of Kaiserslautern (2003), http://www.singular.uni-kl.de
Murphy, S., Robshaw, M.J.B.: Essential Algebraic Structure within the AES. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg (2002)
Oswald, E., Daemen, J., Rijmen, V.: The State of the Art of Rijndael’s Security. Technical report, (available at), www.a-sit.at/technologieb/evaluation/aes_report_e.pdf
Stinson, D.R.: CRYPTOGRAPHY, Theory and Practice, 2nd edn. Chapman & Hall/CRC, Boca Raton (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Toli, I., Zanoni, A. (2005). An Algebraic Interpretation of \(\mathcal{AES}\) 128 . In: Dobbertin, H., Rijmen, V., Sowa, A. (eds) Advanced Encryption Standard – AES. AES 2004. Lecture Notes in Computer Science, vol 3373. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11506447_8
Download citation
DOI: https://doi.org/10.1007/11506447_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26557-3
Online ISBN: 978-3-540-31840-8
eBook Packages: Computer ScienceComputer Science (R0)