Skip to main content

An Algebraic Interpretation of \(\mathcal{AES}\) 128

  • Conference paper
Advanced Encryption Standard – AES (AES 2004)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3373))

Included in the following conference series:

Abstract

We analyze an algebraic representation of \(\mathcal{AES}\) 128 as an embedding in \(\mathcal{BES}\), due to Murphy and Robshaw. We present two systems of equations S  ⋆  and K  ⋆  concerning encryption and key generation processes. After some simple but rather cumbersome substitutions, we should obtain two new systems \({\mathcal{C}}_{1}\) and \({\mathcal{C}}_{2}\). \({\mathcal{C}}_{1}\) has 16 very dense equations of degree up to 255 in each of its 16 variables. With a single pair (p,c), with p a cleartext and c its encryption, its roots give all possible keys that should encrypt p to c. \({\mathcal{C}}_{2}\) may be defined using 11 or more pairs (p,c), and has 16 times as many equations in 176 variables. K  ⋆  and most of S  ⋆  is invariant for all key choices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, New York (1992)

    MATH  Google Scholar 

  2. Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Daemen, J., Rijmen, V.: AES proposal: Rijndael (Version 2). NIST AES (1999). Website, http://csrc.nist.gov/encryption/aes

  4. Daemen, J., Rijmen, V.: The design of Rijndael: AES - The Advanced Encryption Standard. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  5. National Institute of Standards and Technology. Advanced Encryption Standard. In: FIPS, November 26, vol. 197 (2001)

    Google Scholar 

  6. Ferguson, N., Schroeppel, R., Whiting, D.: A simple algebraic representation of Rijndael. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 103–111. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Grayson, D.R., Stillman, M.E.: Macaulay 2, a software system for research in algebraic geome= try, Available at, http://www.math.uiuc.edu/Macaulay2/

  8. Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 2-0-3. A Computer Algebra System for= Polynomial Computations. Center for Computer Algebra, University of Kaiserslautern (2003), http://www.singular.uni-kl.de

  9. Murphy, S., Robshaw, M.J.B.: Essential Algebraic Structure within the AES. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Oswald, E., Daemen, J., Rijmen, V.: The State of the Art of Rijndael’s Security. Technical report, (available at), www.a-sit.at/technologieb/evaluation/aes_report_e.pdf

  11. Stinson, D.R.: CRYPTOGRAPHY, Theory and Practice, 2nd edn. Chapman & Hall/CRC, Boca Raton (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Toli, I., Zanoni, A. (2005). An Algebraic Interpretation of \(\mathcal{AES}\) 128 . In: Dobbertin, H., Rijmen, V., Sowa, A. (eds) Advanced Encryption Standard – AES. AES 2004. Lecture Notes in Computer Science, vol 3373. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11506447_8

Download citation

  • DOI: https://doi.org/10.1007/11506447_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26557-3

  • Online ISBN: 978-3-540-31840-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics