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Abstract. Offline partial evaluation techniques rely on an annotated
version of the source program to control the specialisation process. These
annotations guide the specialisation and ensure the termination of the
partial evaluation. We present an algorithm for generating these anno-
tations automatically. The algorithm uses state-of-the-art termination
analysis techniques, combined with a new type-based abstract interpre-
tation for propagating the binding types. This algorithm has been im-
plemented as part of the logen partial evaluation system, along with a
graphical annotation visualiser and editor, and we report on the perfor-
mance of the algorithm for a series of benchmarks.

1 Introduction

The offline approach to specialisation has proven to be very successful for func-
tional and imperative programming, and more recently for logic programming.
Most offline approaches perform a binding-time analysis (BTA) prior to the spe-
cialisation phase. Once this has been performed, the specialisation process itself
can be done very efficiently [20] and with a predictable outcome. Compared to
online specialisation, offline specialisation is in principle less powerful (as con-
trol decisions are taken by the BTA before the actual static input is available),
but much more efficient (once the BTA has been performed). This makes offline
specialisation very useful for compiling interpreters [19], a key application of
partial evaluation. However, up until now, no automatic BTA for logic programs
has been fully implemented (though there are some partial implementations,
discussed in Section 7), requiring users to manually annotate the program. This
is an error-prone process, and requires considerable expertise. Hence, to make
offline specialisation accessible to a wider audience, a fully automatic BTA is
essential.
? Work supported in part by European Framework 5 Project ASAP (IST-2001-38059).

?? Roskilde authors supported in part by the IT-University of Copenhagen.



In essence, a binding-time analysis does the following: given a program and
a description of the input available for specialisation, it approximates all values
within the program and generates annotations that steer the specialisation pro-
cess. The partial evaluator (or the compiler generator generating the specialised
partial evaluator) then uses the generated annotated program to guide the spe-
cialisation process. This process is illustrated in Fig. 1. The figure also shows
our new graphical editor which allows a user to inspect the annotations and fine
tune them if necessary.
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Fig. 1. The role of the BTA for offline specialisation using logen

To guide our partial evaluator the binding-time analysis must provide binding
types and clause annotations, which will now be described.

Binding Types

Each argument of a predicate in an annotated program is given a binding type
by means of filter declarations.A binding type indicates something about the
structure of an argument at specialisation time. The basic binding types are
usually known as static and dynamic defined as follows.

– static: The argument is definitely known at specialisation time;
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– dynamic: The argument is possibly unknown at specialisation time.

We will see in Section 3 that more precise binding types can be defined by
means of regular type declarations, and combined with basic binding types. For
example, an interpreter may use an environment that is a partially static data
structure at partial evaluation time. To model the environment, e.g., as a list of
static names mapped to dynamic variables we would use the following definition:

:- type binding = static / dynamic.
:- type list_env = [] ; [binding | list_env].

Through the filter declarations we associate binding types with arguments of
particular predicates, as in the following example (taken from the inter binding
benchmark to be discussed in Section 6):

:- filter int(static, (type list_env), dynamic).

The filter declarations influence global control, since dynamic parts of argu-
ments are generalised away (that is, replaced by fresh variables) and the known,
static parts are left unchanged. They also influence whether arguments are “fil-
tered out” in the specialised program. Indeed, static parts are already known at
specialisation time and hence do not have to be passed around at runtime.

Clause Annotations

Clause annotations indicate how each call in the program should be treated
during specialisation. Essentially, these annotations determine whether a call in
the body of a clause is performed at specialisation time or at run time. Clause
annotations influence the local control [22]. For the logen system [20] the main
annotations are the following.

– Unfold: The call is unfolded under the control of the partial evaluator. The
call is replaced with the predicate body, performing all the needed substitu-
tions

– Memo: The call is not unfolded, instead the call is generalised using the
filter declaration and specialised independently

– Call: The call is fully executed without further intervention
– Rescall: The call is left unmodified in the residual code

2 Algorithm Overview

Implementing a fully automatic BTA is a challenging task for several reasons.
First, the binding type information about the static and dynamic parts of ar-
guments has to be propagated all throughout the program. Second, on has to
decide how to treat each body call in the program. This has to be guided by
termination issues (avoiding infinite unfolding) but also safety issues (avoiding
calling built-ins that are not sufficiently instantiated). Furthermore, the deci-
sions made about how to treat body calls in turn affect the propagation of the
binding types, which in turn affect how body calls are to be treated. In summary,
we need
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– a precise way to propagate binding types, allowing for new types and par-
tially static data,

– a way to detect whether the current annotations ensure safety and termina-
tion at specialisation time,

– and an overall algorithm to link the above two together.

Also, in case the current annotations do not ensure termination we need a way
to identify the body calls that are causing the (potential) non-termination in
order to update the annotations. For this we had to implement our own termi-
nation analyzer, based on the binary clause semantics [9]. To achieve a precise
propagation of binding types we have used a new analysis framework [13] based
on regular types and type determinization.

We now outline the main steps of our overall BTA algorithm depicted in
Fig. 2. The input to the algorithm consists of a program, a set of binding types,
and a filter declaration giving binding types to the entry query (the query with
respect to which the program is to be partially evaluated). The core of the
algorithm is a loop which propagates the binding types from the entry query
with respect to the current clause annotations (step 1), generates the abstract
binary program (steps 2 and 3) and checks for termination conditions (step 4).

If a call is found to be unsafe at step 4 (e.g. might not terminate) the anno-
tations are modified accordingly. Initially, all calls are annotated as unfold (or
call for built-ins), with the exception of imported predicates which are anno-
tated as rescall (step 0). Annotations can be changed to memo or rescall, until
termination is established. Termination of the main loop is ensured since there
is initially only a finite number of unfold or call annotations, and each iteration
of the loop eliminates one or more unfold or call annotation.

The decision on how to annotate calls to built-in predicates cannot be handled
by the termination checker, but is guided by a definition of the allowed calling
patterns, with respect to the given set of binding types. For instance, considering
simple binding types static and dynamic, the call X > Y can be executed only
when both X and Y are static, whereas the call X is Y can be executed where Y
is static but X is dynamic (either known or unknown). Some built-ins have more
than one allowed calling pattern; for example functor(T,F,N) can be executed
if either T is static or both F and N are static. Whenever the binding types for a
call to a built-in predicate do not match one of the allowed calling patterns, the
call is marked rescall. Thus if no calling patterns are supplied for some built-in,
then all calls to that built-in will be annotated rescall.

3 Binding Type Propagation

The basis of the BTA is a classification of arguments using abstract values. In
this section we explain how to obtain such a classification for a given program
and initial goal. Our method is completely independent of the actual binding
types, apart from requiring that they should include the type dynamic. Usually
static and nonvar are also included. A binding-time division is a set of filter
declarations of the form p(t1, . . . , tn), where p/n is a program predicate and
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Fig. 2. Overview of the BTA algorithm

t1, . . . , tn are binding types. For the purpose of explanation we consider here
only monovariant binding-time divisions, namely those in which there is not
more than one filter declaration for each predicate. However, the algorithm has
been extended to polyvariant binding-time divisions, which allow several filter
declarations for each predicate.

A binding-time division defines the binding types occurring in each predicate
call in an execution of the program for a given initial goal. This information in
turn is used when determining which calls to unfold and which to keep in the
residual programs. A binding-time division should be safe in the sense that every
possible concrete call is described by some filter declaration in it.

The use of static-dynamic binding types was introduced for functional pro-
grams, and has been used in BTAs for logic programs [23]. However, a simple
classification of arguments into “fully known” or “totally unknown” is often un-
satisfactory in logic programs, where partially unknown terms occur frequently
at runtime, and would prevent specialisation of many “natural” logic programs
such as the vanilla meta-interpreter [15, 21] or most of the benchmarks from the
dppd library [18].
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We outline a method of describing more expressive binding types and propa-
gating them. The analysis framework is described elsewhere [13]. In this frame-
work, modes (or “binding times”) such as static and dynamic can be freely mixed
with binding types such as lists.

Regular Binding Types

A regular type t is defined by a rule t = f1(t1,1, . . . , t1,m1); . . . ; fn(tn,1, . . . , tn,mn)
where f1, . . . , fn are function symbols (possibly not distinct) and for all 1 ≤
i ≤ n and 1 ≤ j ≤ mi, mi is the arity of fi, and ti,j are regular types. The
interpretation of such rules is well understood in the framework of regular tree
grammars or finite tree automata [10].

Instantiation modes including static, dynamic and nonvar can be coded as
regular types, for a fixed signature. For example, if we assume that the signature
is {[], [.|.], s, 0, v} with the usual arities, then the definitions of the types ground
term (static), non-variables (nonvar) and any term (dynamic ) are as follows.

static = 0; []; [static|static]; s(static)
nonvar = 0; []; [dynamic|dynamic]; s(dynamic)
dynamic = 0; []; [dynamic|dynamic]; s(dynamic); v

The constant v is a distinguished constant not occurring in programs or goals.
Note that v is not included in the types static and nonvar. Therefore any term
of type dynamic is possibly a variable.

In addition to modes, regular types can describe common data structures.
The set of all lists, for instance, is given as list = []; [dynamic|list]. We can
describe the set of lists of list by the type listlist = []; [list|listlist]. Program-
specific types such as the type of environments are also regular types.

binding = static/dynamic
list env = []; [binding|list env]

Type Determinization

We take a given set of regular types, and transform them into a set of disjoint
regular types. This process is called determinization and is a standard operation
on finite tree automata [10]. A set of disjoint types is represented by a set of
type rules of the form t = f1(t1,1, . . . , t1,m1); . . . ; fn(tn,1, . . . , tn,mn) as before,
but with the added condition that there are no two rules having an occurrence
of the same term fi(ti,1, . . . , ti,mi

). Such a set of rules corresponds to a bottom-
up deterministic finite tree automata [10]. The inclusion of the type dynamic
ensures that the set of rules is complete, that is, that every term is a member of
exactly one of the disjoint types.

For example, given the types dynamic, static, nonvar and list as shown
above, determinization yields definitions of the disjoint sets of terms, which are
(1) non-ground, non-variable non-lists, (2) non-ground lists, (3) ground lists,
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(4) variables and (5) ground non-lists. The rules defining these disjoint types are
typically hard to read and would be difficult to write directly. For example, nam-
ing the above 5 types q1, . . . , q5 respectively, the type rule for non-ground lists is
q2 = [q1|q2]; [q2|q2]; [q3|q2]; [q4|q2]; [q5|q2]; [q2|q3]; [q1|q3]; [q4|q3]. A more compact
representation is actually used [13].

Types are abstractions of terms, and can be used to construct a domain
for abstract interpretation [4, 7, 8, 16]. The advantage of determinized types is
that we can propagate them more precisely than non-disjoint types. Overlapping
types tend to lose precision. Suppose t1 and t2 are not disjoint; then terms that
are in the intersection can be represented by both t1 and t2 and hence the
two types will not be distinguishable wherever terms from the intersection can
arise. In effect, a set of disjoint types contains, in such cases, separate types
representing t1 ∩ t2, t1 \ t2 and t2 \ t1. In the worst case, it can thus be seen
that there is an exponential number of disjoint types for a given set of types. In
practice, many of the intersections and set complements are empty and we find
usually that the number of disjoint types is similar to the number of given types.
Thus with disjoint types, we can obtain a more accurate representation of the
set of terms that can appear in a given argument position, while retaining the
intuitive, user-oriented notation of arbitrary types. In fact, the type declarations
of logen can be used without modification to construct an abstract domain.

The rules for a complete set of disjoint types define a pre-interpretation of
the signature Σ, whose domain is the set of disjoint types. An abstract inter-
pretation based on this pre-interpretation gives the least model over the domain
[2, 3, 12]. This yields success patterns for each program predicate, over the dis-
joint types. That is, each predicate p/n has a set of possible success patterns
{p(t11, . . . , t

1
n); . . . ; p(tm1 , . . . , tmn )}. A set of accurate call patterns can be com-

puted from the model and an initial typed goal. We use the “magic-set” ap-
proach to obtain the calls, as described by Codish and Demoen [6]. This yields
a set of “call patterns” for each predicate, say {p(s1

1, . . . , s
1
n); . . . ; p(sk

1 , . . . , sk
n)}.

(Note that we could use a top-down analysis framework, but for analyses based
on pre-interpretations, this would give exactly the same results).

Finally the filter for p/n derived from the set of calls is obtained by collect-
ing all the possible types for each argument together. The set of call patterns
{p(s1

1, . . . , s
1
n); . . . ; p(sk

1 , . . . , sk
n)} yields the filter p({s1

1, . . . , s
k
1}, . . . , {s1

n, . . . , sk
n}).

For displaying to the user, if required, these filters can be translated back to a
description in terms of the original types, rather than the disjoint types.

Analysing Annotated Programs

The standard methods for computing an abstract model and abstract call pat-
terns have to be modified in our procedure, since some body calls may be marked
as memo or rescall. That is, they are not to be unfolded but rather kept in the
specialised program. This obviously affects propagation of binding types, since
a call annotated as memo or rescall cannot contribute any answer bindings.

When building the abstract model of a program, we simply delete memo-ed
and rescall-ed calls from the program, as they cannot contribute anything to
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the model. Let C be a conjunction of calls; then denote by C the conjunc-
tion obtained by deleting memo-ed and rescall-ed atoms from C. Let P be
an annotated program; then we compute the success patterns for the program
P = {H ← B | H ← B ∈ P}.

When deriving a call pattern, say for atom Bj in clause H ← B1, . . . , Bj , . . .,
we ignore the answers to memo-ed and rescall-ed calls occurring in B1, . . . , Bj−1.
That is, we consider the clause H ← B1, . . . , Bj−1, Bj , . . ., when computing the
calls to Bj .

4 Termination Checking

Without proper annotations in the source program, the specialiser may fail to
terminate. There are two reasons for nontermination:

– Local Termination: Unfolding an unsafe call may fail to terminate or
provide infinitely many answers.

– Global Termination: Even if local termination is ensured, the specialisa-
tion may still fail to terminate if it attempts to build infinitely many spe-
cialised versions of some predicate for infinitely many different static values.

We do not discuss global termination in this paper. We approach the local ter-
mination problem using the binary clause semantics [9], a representation of a
program’s computations that makes it possible to reason about loops and hence
termination.

Binary Clause Semantics

Informally, the binary clause semantics of a program P is the set of all pairs of
atoms (called binary clauses) p(X̄)θ ← q(t̄) such that p is a predicate, p(X̄) is a
most general atom for p, and there is a finite derivation (with leftmost selection
rule) ← p(X̄), . . . ,← (q(t̄), Q) with computed answer substitution θ. In other
words a call to p(X̄) is followed some time later by a call to q(t̄), computing a
substitution θ.

We modify the semantics to include program point information for each call
in the program. A clause p(ppM, X̄)θ ← q(ppN, t̄) details that the call p(X̄) at
program point ppM is followed sometime later by a call to q(t̄) at program point
ppN , computing a substitution θ. This extra precision is required to correctly
identify the actual unsafe call.

To create the binary clause semantics we specialise a modified vanilla inter-
preter with respect to our source program. This allows us to easily adapt the
semantics for the annotations by changing the rules of the interpreter.

For example, take the classic append program shown in Fig. 3. The transfor-
mation to binary clause semantics is shown in Fig. 4. The first clause represents a
loop from the call app([A|B], C, [A|D]) at program point 0 back to itself with
the arguments app(B, C, D), the second clause represents an infinite number
of possible loops through the same point.
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app([], B, B).

app([A|As], B, [A|Cs]) :- app(As, B, Cs).

Fig. 3. The append program

bin_solve_atom__2(0, app([A|B], C, [A|D]), app(B, C, D)).

bin_solve_atom__2(0, app([A|B], C, [A|D]), app(E, F, G)) :-

bin_solve_atom__2(0, app(B, C, D), app(E, F, G)).

Fig. 4. The binary clause version of append from Fig. 3

Convex Hull Abstraction

The binary semantics is in general infinite, but we make a safe approximation
of the set of binary clauses using abstract interpretation. We use a domain of
convex hulls We use a domain of convex hulls (the convex hull analyser used in
our implementation is derived from ones kindly supplied by Genaim and Codish
[14]] and by Benoy, King and Mesnard [1]) to abstract the set of binary clauses
with respect to a selected norm.

Our implementation currently uses two norms, term size as defined in Eq. 1
and list length as defined in Eq. 2. The use of only two norms effectively restricts
ourcurrent implementation to handle only list-processing examples effectively; we
are extending the system to derive the norms automatically from the propagated
binding types, using techniques described in the literature [17, 27].

|t|term =

1 +
n∑

i=1

|ti|term if t = f(t1, ..., tn)

0 otherwise

(1)

|t|list =
{

1 + |ts|list if t = [t|ts]
0 otherwise

(2)

Using such an abstraction, we obtain a finite set of binary clauses and a set of
constraints representing a linear relationship between the sizes of the respective
concrete arguments. Fig. 5 is the binary clause program for append, Fig. 4,
abstracted using the domain of convex hulls with respect to the list norm.

bin_solve_atom(0, app(A,B,C), app(D,E,F)) :-

[A = 1 + D, B = E, C = 1 + F, D > = 0, E >= 0, F >= 0]

Fig. 5. Abstract Convex Hull of Fig. 4 using List norm
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Checking termination criteria

In particular, loops are represented by binary clauses with the same predicate
occurring in the head and body. Termination proofs require that for every ab-
stract binary clause between p and p (at the same program point) there is a
strict reduction in the size for some rigid argument. An argument is rigid if all
of its instances have the same size with respect to the selected norm. We detect
rigidity by examining the filters derived for the arguments, as illustrated below.

The constraints shown in Fig. 5 show a decrease in the first (A = 1+D) and
third argument (C = 1 + F ). Given the initial filter declaration:

:- filter app(type list(dynamic), dynamic, dynamic).

The first argument is rigid with respect to the list norm, so termination is proven
for this loop providing these binding types. If the filter specified was:

:- filter app(dynamic,type list(dynamic), dynamic).

Then the call would have to be marked unsafe and would be changed from
unfold to memo, as there is no strict decrease in any rigid arguments.

5 Example

We demonstrate the binding-time analysis using the transpose example shown in
Fig. 6. The program takes a matrix, represented as a list of lists, and transposes
the rows and columns. The initial filter declaration, providing the binding types

/* Created by Pylogen */

/* file: transpose.pl */

transpose(Xs,[]) :- nullrows(Xs).

transpose(Xs,[Y|Ys]) :- makerow(Xs,Y,Zs), transpose(Zs,Ys).

makerow([],[],[]).

makerow([[X|Xs]|Ys],[X|Xs1],[Xs|Zs]) :- makerow(Ys,Xs1,Zs).

nullrows([]).

nullrows([[]|Ns]) :- nullrows(Ns).

Fig. 6. Program for transposing a matrix

of the entry point is :- filter transpose((type list(dynamic)), dynamic).
The first argument is a list of dynamic elements, the length of the list will be
known but the individual elements will not be known at specialisation time. The
second argument is fully dynamic; it will not be given at specialisation time.
All calls in the program are initially annotated as unfold. Using this initial
annotation and the entry types for transpose we propagate the binding types
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throughout the program. The resultant binding types are shown in Fig. 7. The
list structure has been successfully propagated through the clauses of the pro-
gram.

:- filter transpose((type list(dynamic)), dynamic).

:- filter makerow((type list(dynamic)), dynamic, dynamic).

:- filter nullrows((type list(dynamic))).

Fig. 7. Propagated filters for Fig. 6 using the initial filter transpose((type

list(dynamic)), dynamic).

The next stage of the algorithm looks for possibly non-terminating loops
in the annotated program. The result is shown in Fig. 8. The binary clause
representation of the program has been abstracted with respect to the list norm
over the domain of convex hulls. Termination of each of the loops in Fig. 8 must
show a strict decrease in any rigid argument. Based on the propagated binding
types only the first argument of each predicate is rigid with respect to the list
norm. The predicate makerow/3 has a strict decrease (A=1.0+D), nullrows/1
also has a strict decrease (A=1.0+B) but the recursive call to transpose has no
decrease in a rigid argument and is unsafe.

bin_solve_atom(3, makerow(A,B,C), makerow(D,E,F)) :-

[A=1.0+D,D>=0.0,B=1.0+E,E>=0.0,C=1.0+F,F>=0.0].

bin_solve_atom(4, nullrows(A), nullrows(B)) :-

[A=1.0+B,B>=0.0].

bin_solve_atom(2, transpose(A,B), transpose(C,D)) :-

[B>D,C>=0.0,D>=0.0,A=C,B=1.0+D].

%% Loop at program point 2 is unsafe (transpose/2)

Fig. 8. Binary clause representation of Fig.6 abstracted over the domain of convex
hulls with respect to the list norm

Marking the offending unsafe call as memo removes the potential loop and
further iterations through the algorithm produce no additional unsafe calls. The
final output of the BTA algorithm is shown in Fig. 9.

6 Experimental Results

The automatic binding-time analysis detailed in this paper is implemented as
part of the logen partial evaluation system. The system has been tested us-
ing benchmarks derived from the DPPD benchmark library [18]. The figures in
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logen(transpose, transpose(A,[])) :-

logen(unfold, nullrows(A)).

logen(transpose, transpose(A,[B|C])) :-

logen(unfold, makerow(A,B,D)),

logen(memo, transpose(D,C)).

logen(makerow, makerow([],[],[])).

logen(makerow, makerow([[A|B]|C],[A|D],[B|E])) :-

logen(unfold, makerow(C,D,E)).

logen(nullrows, nullrows([])).

logen(nullrows, nullrows([[]|A])) :-

logen(unfold, nullrows(A)).

:- filter makerow((type list(dynamic)), dynamic, dynamic).

:- filter nullrows((type list(dynamic))).

:- filter transpose((type list(dynamic)), dynamic).

Fig. 9. Annotated version of Transpose from Fig. 6

Table 1 present the timing results3 from running the BTA on an unmodified
program given an initial filter declaration. These benchmark examples along
with the pylogen system, shown in Fig. 10, can be downloaded from logen
website4.

Benchmark BTA Original Specialised Relative Time

combined 3220ms 110ms 30ms 0.27
inter binding 1380ms 60ms 10ms 0.17
inter medium 1440ms 140ms 10ms 0.07
inter simple 2670ms 80ms 30ms 0.38
match 400ms 90ms 70ms 0.78
regexp 780ms 220ms 60ms 0.28
transpose 510ms 80ms 10ms 0.13

Table 1. Benchmark Figures for Automatic Binding-Time Analysis

– combined - A test case combining the inter medium, inter simple and reg-
ular expression interpreters.

– inter binding - An interpreter using a partially static data structure for an
environment. In this example we combine the list and term norms.

– inter medium - An interpreter with the environment split into two separate
lists, one for the static names the other for the dynamic values.

3 The execution time for the Original and Specialised code is based on executing the
benchmark query 20,000 times on a 2.4Ghz Pentium with 512Mb running SICStus
Prolog 3.11.1. The specialisation times for all examples was under 10ms.

4 http://www.asap.soton.ac.uk/logen
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– inter simple - A simple interpreter with no environment, but contains a
selection of built-in arithmetic functions.

– match - A string pattern matcher.
– regexp - An interpreter for regular expressions.
– transpose - A matrix transpose program.

Fig. 10. Snapshot of a pylogen session

7 Related Work and Conclusion

To the best of our knowledge, the first binding-time analysis for logic program-
ming is [5]. The approach of [5] obtains the required annotations by analysing
the behaviour of an online specialiser on the subject program. Unfortunately, the
approach was overly conservative. Indeed, [5] decides whether or not to unfold a
call based on the original program, not taking current annotations into account.
This means that a call can either be completely unfolded or not at all. Also, the
approach was never fully implemented and integrated into a partial evaluator.

In Section 6 of [20] a more precise BTA has been presented, which has been
partially implemented. It is actually the precursor of the BTA here. However,
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the approach was not fully implemented and did not consider the issue of fil-
ter propagation (filters were supposed to be correct). Also, the identification of
unsafe calls was less precise as it did not use the binary clause semantics with
program points (i.e., calls may have been classified as unsafe even though they
were not part of a loop).

[26] is probably the most closely related work to ours. This work has a lot
in common with ours, and we were unaware of this work while developing our
present work.5 Let us point out the differences. Similar to [20], [26] was not
fully implemented (as far as we know, based on the outcome of the termination
analysis, the user still had to manually update the annotations by hand) and
also did not consider the issue of filter propagation. Also, [26] cannot handle
the nonvar annotation (this means that, e.g., it can only handle the vanilla
interpreter if the call to the object program is fully static). However, contrary to
[20], and similar to our approach, [26] does use the binary clause semantics. It
even uses program point information to identify non-terminating calls. However,
we have gone one step further in using program point information, as we will
only look for loops from one program point back to itself. Take for example the
following program:

p(a) :- q(a). q(a) :- q(b). q(b) :- q(b).

Both our approach and [26] will mark the call q(a) as unfoldable and the call
q(b) in clause 3 as unsafe. However, due to the additional use of program points,
we are able to mark the call q(b) in clause 2 as unfoldable (as there is no loop
from that program point back to itself), whereas we believe that [26] will mark
it as unsafe. We believe that this extra precision may pay off for interpreters.
Finally, due to the use of our meta-programming approach we can handle the
full logen annotations (such as call, rescall, resif,...) and can adapt our
approach to compute memoisation loops and tackle global termination.

The papers [24, 25, 28] describe various BTAs for Mercury, even addressing
issues such as modularity and higher-order predicates. An essential part of these
approaches is the classification of unifications (using Mercury’s type and mode
information) into tests, assignments, constructions and deconstructions. Hence,
these works cannot be easily ported to a Prolog setting, although some ideas can
be found in [28].

Currently our implementation guarantees correctness and termination at the
local level, and correctness but not yet termination at the global level. However,
the framework can very easily be extended to ensure global termination as well.
Indeed, our binary clause interpreter can also compute memoisation loops, and
so we can apply exactly the same procedure as for local termination. Then, if
a memoised call is detected to be unsafe we have to mark the non-decreasing
arguments as dynamic. Finally, as has been shown in [11], one can actually relax
the strict decrease requirement for global termination (i.e., one can use ≤ rather
than <), provided so-called “finitely partitioning” norms are used.

5 Thanks for reviewers of LOPSTR’04 for pointing this work out to us.
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