Abstract
We present a type theory characterizing the mobility and locality of program terms in a distributed computation. The type theory of our calculus is derived from logical notions of necessity (□A) and possibility (\(\lozenge A\)) of the modal logic S4 via a Curry-Howard style isomorphism. Logical worlds are interpreted as sites for computation, accessibility corresponds to dependency between processes at those sites. Necessity (□A) describes terms of type A which have a structural kind of mobility or clocation-independence. Possibility (\(\lozenge A\)) describes terms of type A located somewhere, perhaps at a remote site. The modalities □ and \(\lozenge\) are defined in a clean, orthogonal manner, leading to a simple account of mobility and higher-order functions. For illustration, we assume an execution environment with each location distinguished by a mutable store. Here modal types ensure that store addresses never escape from the location where they are defined, eliminating a source of runtime errors. We speculate as to other advantages or trade-offs of this disciplined style of distributed programming.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Borghuis, T., Feijs, L.: A constructive logic for services and information flow in computer networks. The Computer Journal 43(4) (2000)
Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 1–37. Springer, Heidelberg (2001)
Caires, L., Cardelli, L.: A spatial logic for concurrency (part II). In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 209–225. Springer, Heidelberg (2002)
Cardelli, L., Ghelli, G., Gordon, A.D.: Mobility types for mobile ambients. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 230–239. Springer, Heidelberg (1999)
Cardelli, L., Ghelli, G., Gordon, A.D.: Mobility types for mobile ambients. Technical Report MSR-TR-99-32, Microsoft (June 1999)
Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)
Cardelli, L., Gordon, A.D.: Logical properties of name restriction. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 46–60. Springer, Heidelberg (2001)
Cardelli, L., Gordon, A.D.: Ambient logic. Technical report, Microsoft (2002)
Hennessy, M., Riely, J.: Resource access control in systems of mobile agents. Information and Computation 173, 82–120 (2002)
Jagannathan, S.: Continuation-based transformations for coordination languages. Theoretical Computer Science 240(1), 117–146 (2000)
Jia, L., Walker, D.: Modal proofs as distributed programs. Technical Report TR-671-03, Princeton University (August 2003)
Jia, L., Walker, D.: Modal proofs as distributed programs. In: European Symposium on Programming Languages (April 2004)
Kranz, D.A., Halstead Jr., R.H., Mohr, E.: Mul-T: a high-performance parallel lisp. In: Proceedings of the ACM SIGPLAN 1989 Conference on Programming language design and implementation, pp. 81–90. ACM Press, New York (1989)
Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes (I & II). Information and Computation 100(1), 1–77 (1992)
Moody, J.: Modal logic as a basis for distributed computation. Technical Report CMU-CS-03-194, Carnegie Mellon University (October 2003)
Moody, J.: Logical mobility and locality types (extended report). Technical Report CMU-CS-05-128, CMU (2005)
De Nicola, R., Ferrari, G., Pugliese, R., Venneri, B.: Types for access control. Theoretical Computer Science 240(1), 215–254 (2000); Klaim and tuple-spaces
Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Mathematical Structures in Computer Science 11(4), 511–540 (2001)
Ravara, A., Matos, A.G., Vasconcelos, V.T., Lopes, L.: Lexically scoped distribution: what you see is what you get. In: Foundations of Global Computing. Elsevier, Amsterdam (2003)
Simpson, A.K.: Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis, University of Edinburgh (1994)
Murphy VII, T., Crary, K., Harper, R., Pfenning, F.: A symmetric modal lambda calculus for distributed computing. In: LICS (2004) (to appear)
Murphy VII, T., Crary, K., Harper, R., Pfenning, F.: A symmetric modal lambda calculus for distributed computing. Technical Report CMU-CS-04-105, Carnegie Mellon University (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Moody, J. (2005). Logical Mobility and Locality Types. In: Etalle, S. (eds) Logic Based Program Synthesis and Transformation. LOPSTR 2004. Lecture Notes in Computer Science, vol 3573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11506676_5
Download citation
DOI: https://doi.org/10.1007/11506676_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26655-6
Online ISBN: 978-3-540-31683-1
eBook Packages: Computer ScienceComputer Science (R0)