Skip to main content

An Intelligent Grading System Using Heterogeneous Linguistic Resources

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2005 (IDEAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3578))

  • 1367 Accesses

Abstract

In this paper, we propose an intelligent grading system using heterogeneous linguistic resources. We used latent semantic kernel as one resource in former research and found that a deficit of indexed terms gave rise to performance bottleneck. To solve this, we expand answer papers, written by students and instructors, by utilizing one of widely used linguistic resources, WordNet. We supplement the papers with words semantically related to indexed terms of papers. The added words are selected from the synonyms and hyponyms on WordNet. And to get rid of the criterion decision problem, we use partial score of each question and evaluate the correlation coefficient between grading results of the proposed approach and human instructors. The proposed approach in this research achieves maximally 0.94 correlation coefficient to instructors, which is 0.06 higher than that of the former research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bang, H., Hur, S., Kim, W., Lee, J.: A System to Supplement Subjectivity Test Marking on the Web-based. In: Proceedings of KIPS (2001) (in Korean)

    Google Scholar 

  2. Kim, Y., Oh, J., Chang, J., Lee, J.: A Supplement Subjectivity Test Marking System using Latent Semantic Kernels. In: Myaeng, S.-H., Zhou, M., Wong, K.-F., Zhang, H.-J. (eds.) AIRS 2004. LNCS, vol. 3411, pp. 225–228. Springer, Heidelberg (2004)

    Google Scholar 

  3. Cristianini, N., Shawe-Taylor, J., Lodhi, H.: Latent Semantic Kernels. Journal of Intelligent Information System 18(2), 127–152 (2002)

    Article  Google Scholar 

  4. Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis. Discourse Processes 25, 259–284 (1998)

    Article  Google Scholar 

  5. Miller, G.A.: WordNet: An On-Line Lexical Database. International Journal of Lexicography (1999)

    Google Scholar 

  6. Lee, E., Lim, S.: Korean WordNet ver. 2.0. Korean Language Processing Laboratory, Pusan National University (2004)

    Google Scholar 

  7. Kang, S.: Gerneral Purposed Morphological Analyzer HAM Ver. 6.0.0 (2004), http://nlp.kookmin.ac.kr

  8. Kim, W.: Ko-Sa-Seong-Eo (Proverbs) Encyclopedia. Eu-Yu Inc. (2003) (in Korean)

    Google Scholar 

  9. Bain, L., Engelhardt, M.: Introduction to Probability and Mathematical Statistics. Thomson Learning, 179–190 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, YS., Cho, WJ., Lee, JY., Oh, YJ. (2005). An Intelligent Grading System Using Heterogeneous Linguistic Resources. In: Gallagher, M., Hogan, J.P., Maire, F. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2005. IDEAL 2005. Lecture Notes in Computer Science, vol 3578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11508069_14

Download citation

  • DOI: https://doi.org/10.1007/11508069_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26972-4

  • Online ISBN: 978-3-540-31693-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics