Skip to main content

Abstract

The elastic net and related algorithms, such as generative topographic mapping, are key methods for discretized dimension-reduction problems. At their heart are priors that specify the expected topological and geometric properties of the maps. However, up to now, only a very small subset of possible priors has been considered. Here we study a much more general family originating from discrete, high-order derivative operators. We show theoretically that the form of the discrete approximation to the derivative used has a crucial influence on the resulting map. Using a new and more powerful iterative elastic net algorithm, we confirm these results empirically, and illustrate how different priors affect the form of simulated ocular dominance columns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Durbin, R., Willshaw, D.: An analogue approach to the traveling salesman problem using an elastic net method. Nature 326, 689–691 (1987)

    Article  Google Scholar 

  2. Durbin, R., Szeliski, R., Yuille, A.: An analysis of the elastic net approach to the traveling salesman problem. Neural Computation 1, 348–358 (1989)

    Article  Google Scholar 

  3. Bishop, C.M., Svensén, M., Williams, C.K.I.: GTM: The generative topographic mapping. Neural Computation 10, 215–234 (1998)

    Article  Google Scholar 

  4. Kohonen, T.K.: Self-Organizing Maps. Springer, Heidelberg (1995)

    Google Scholar 

  5. Durbin, R., Mitchison, G.: A dimension reduction framework for understanding cortical maps. Nature 343, 644–647 (1990)

    Article  Google Scholar 

  6. Goodhill, G.J., Willshaw, D.J.: Application of the elastic net algorithm to the formation of ocular dominance stripes. Network: Computation in Neural Systems 1, 41–59 (1990)

    Article  MathSciNet  Google Scholar 

  7. Dayan, P.: Arbitrary elastic topologies and ocular dominance. Neural Computation 5, 392–401 (1993)

    Article  Google Scholar 

  8. Carreira-Perpiñán, M.Á.: Continuous Latent Variable Models for Dimensionality Reduction and Sequential Data Reconstruction. PhD thesis, University of Sheffield, UK (2001)

    Google Scholar 

  9. Carreira-Perpiñán, M.Á., Goodhill, G.J.: Generalized elastic nets (2005) (in revision)

    Google Scholar 

  10. Golub, G.H., van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  11. Carreira-Perpiñán, M.Á., Goodhill, G.J.: Influence of lateral connections on the structure of cortical maps. J. Neurophysiol. 92, 2947–2959 (2004)

    Article  Google Scholar 

  12. Utsugi, A.: Hyperparameter selection for self-organizing maps. Neural Computation 9, 623–635 (1997)

    Article  Google Scholar 

  13. Samarskiĭ, A.A.: The Theory of Difference Schemes. Marcel Dekker, New York (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carreira-Perpiñán, M.Á., Dayan, P., Goodhill, G.J. (2005). Differential Priors for Elastic Nets. In: Gallagher, M., Hogan, J.P., Maire, F. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2005. IDEAL 2005. Lecture Notes in Computer Science, vol 3578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11508069_44

Download citation

  • DOI: https://doi.org/10.1007/11508069_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26972-4

  • Online ISBN: 978-3-540-31693-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics