Skip to main content

Modeling Context as Statistical Dependence

  • Conference paper
Modeling and Using Context (CONTEXT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3554))

Abstract

Theories of context in logic enable reasoning and deduction in contexts represented as formal objects. Such theories are not readily applicable to systems that learn by induction from a set of examples. Probabilistic graphical models already provide the tools to exploit context represented as statistical dependences, thereby providing a unified methodology to incorporate context information in learning and inference. Drawing on a case study from optical character recognition, we present the various types of dependences that can occur in pattern classification problems and how such dependences can be exploited to increase classification accuracy. Learning under different conditions require differing amounts and kinds of samples and different trade-offs between modeling error due to overly strict independence assumptions and estimation error of models that are too elaborate for the size of the available training set. With a series of examples based on frames of two patterns we show how each kind of dependence can be represented using graphical models and present examples from other disciplines where the particular dependence frequently occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aji, M.S., McEliece, R.J.: The generalized distributive law. IEEE Trans. on Information Theory 46(2), 325–343 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brunk, H.D.: An Introduction to Mathematical Statistics. Ginn&Co., Boston (1960)

    MATH  Google Scholar 

  3. Chow, C.K.: A recognition method using neighbor dependence. IRE Trans. Elec. Comp. EC-11, 683–690 (1966)

    Article  Google Scholar 

  4. Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with dependence trees. IEEE Trans. Info. Theory IT-14, 462–467 (1968)

    Article  Google Scholar 

  5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statistical Society Series B(39), 1–38 (1977)

    MathSciNet  Google Scholar 

  6. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley, Chichester (1973)

    MATH  Google Scholar 

  7. Frey, B.J.: Graphical Models for Machine Learning and Digital Communication. MIT Press, Cambridge (1998)

    Google Scholar 

  8. Friedman, H.: Regularized discriminant analysis. Journal of American Statistical Association 84(405), 166–175 (1989)

    Article  Google Scholar 

  9. Havelock, D.I.: The topology of locales and its effect on position uncertainty. IEEE Trans. PAMI 13(4), 380–386 (1991)

    Google Scholar 

  10. Heckerman, D.: A tutorial on learning with bayesian networks. Technical report, Microsoft Research, Redmond, Washington (1995)

    Google Scholar 

  11. Jordan, M.I., Ghahramani, Z., Jaakkola, T., Saul, L.K.: An introduction to variational methods for graphical models. Machine Learning 37(2), 183–233 (1999)

    Article  MATH  Google Scholar 

  12. McCarthy, J.L.: Notes on formalizing context. In: IJCAI, pp. 555–562 (1993)

    Google Scholar 

  13. Murphy, K.: An introduction to graphical models. Technical report, Intel Research (2001)

    Google Scholar 

  14. Nagy, G.: Teaching a computer to read. In: Proceedings of the Eleventh International Conference on Pattern Recognition, vol. 2, pp. 225–229 (1992)

    Google Scholar 

  15. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  16. Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  17. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. In: Proc. of the IEEE, vol. 2, pp. 257–285 (1989)

    Google Scholar 

  18. Raudys, S.J., Jain, A.K.: Small sample effects in statistical pattern recognition: Recommendations for practitioners. IEEE Trans. PAMI 13(3), 252–263 (1991)

    Google Scholar 

  19. Redner, R.A., Walker, H.F.: Mixture densities, maximum likelihood, and the EM algorithm. SIAM Review 26(2), 195–235 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sarkar, P., Nagy, G.: Style consistent classification of isogenous patterns. IEEE Trans. PAMI 27(1), 14–22 (2005)

    Google Scholar 

  21. Sarkar, P., Nagy, G., Zhou, J., Lopresti, D.: Spatial sampling of printed patterns. IEEE Trans. PAMI 20(3), 344–351 (1998)

    Google Scholar 

  22. Schalkoff, R.: Pattern Recognition. Wiley, Chichester (1991)

    Google Scholar 

  23. Schurmann, J.: Pattern Classification. Wiley, Chichester (1996)

    Google Scholar 

  24. Serafini, L., Bouquet, P.: Comparing formal theories of context in AI. Artif. Intell. 155(1-2), 41–67 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Toussaint, G.T.: The use of context in pattern recognition. Pattern Recognition 10(3), 189–204 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  26. Veeramachaneni, S., Nagy, G.: Style context with second-order statistics. IEEE Trans. PAMI 27(1), 88–98 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Veeramachaneni, S., Sarkar, P., Nagy, G. (2005). Modeling Context as Statistical Dependence. In: Dey, A., Kokinov, B., Leake, D., Turner, R. (eds) Modeling and Using Context. CONTEXT 2005. Lecture Notes in Computer Science(), vol 3554. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11508373_39

Download citation

  • DOI: https://doi.org/10.1007/11508373_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26924-3

  • Online ISBN: 978-3-540-31890-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics