Abstract
We propose a new nonparametric classification framework for numerical patterns, which can also be exploitable for exploratory data analysis. The key idea is approximating each class region by a family of convex geometric sets which can cover samples of the target class without containing any samples of other classes. According to this framework, we consider a combinatorial classifier based on a family of spheres, each of which is the minimum covering sphere for a subset of positive samples and does not contain any negative samples. We also present a polynomial-time exact algorithm and an incremental randomized algorithm to compute it. In addition, we discuss the soft-classification version and evaluate these algorithms by some numerical experiments.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bousquet, O., Boucheron, S., Lugosi, G.: Theory of classification: A survey of recent advances. ESAIM Probability and Statistics (2004) (to appear)
Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer, Heidelberg (1996)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, Chichester (2001)
Vapnik, V.N.: The Nature of Statistical Learning Theory, 2nd edn. Springer, Heidelberg (2000)
Kudo, M., Yanagi, S., Shimbo, M.: Construction of class regions by a randomized algorithm: A randomized subclass method. Pattern Recognition 29, 581–588 (1996)
Takigawa, I., Abe, N., Shidara, Y., Kudo, M.: The boosted/bagged subclass method. International Journal of Computing Anticipatory Systems 14, 311–320 (2004)
Erdős, P., Kleitman, D.: Extremal problems among subsets of a set. Discrete Mathematics 8, 281–294 (1974)
Cannon, A.H., Cowen, L.J.: Approximation algorithms for the class cover problem. Annals of Mathematics and Artificial Intelligence 40, 215–223 (2004)
Priebe, C.E., Marchette, D.J., DeVinney, J.G., Socolinsky, D.A.: Classification using class cover catch digraphs. Journal of Classification 20, 3–23 (2003)
Marchette, D.J.: Random Graphs for Statistical Pattern Recognition. John Wiley & Sons, Chichester (2004)
DeVinney, J.G.: The Class Cover Problem and Its Application in Pattern Recognition. Ph.D. Thesis, The Johns Hopkins University (2003)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)
Cannon, A.H., Ettinger, J.M., Hush, D., Scovel, C.: Machine learning with data dependent hypothesis classes. Journal of Machine Learning Research 2, 335–358 (2002)
Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H.A. (ed.) New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991)
Gärtner, B., Schönher, S.: Fast and robust smallest enclosing balls. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 325–338. Springer, Heidelberg (1999)
Fischer, K., Gärtner, B., Kutz, M.: Fast smallest-enclosing-ball computation in high dimensions. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 630–641. Springer, Heidelberg (2003)
Zhou, G.L., Toh, K.C., Sun, J.: Efficient algorithms for the smallest enclosing ball problem. Computational Optimization and Applications (2004) (accepted)
Blake, C., Merz, C.: UCI repository of machine learning databases (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Takigawa, I., Kudo, M., Nakamura, A. (2005). The Convex Subclass Method: Combinatorial Classifier Based on a Family of Convex Sets. In: Perner, P., Imiya, A. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2005. Lecture Notes in Computer Science(), vol 3587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11510888_10
Download citation
DOI: https://doi.org/10.1007/11510888_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26923-6
Online ISBN: 978-3-540-31891-0
eBook Packages: Computer ScienceComputer Science (R0)