Skip to main content

The Convex Subclass Method: Combinatorial Classifier Based on a Family of Convex Sets

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3587))

  • 2148 Accesses

Abstract

We propose a new nonparametric classification framework for numerical patterns, which can also be exploitable for exploratory data analysis. The key idea is approximating each class region by a family of convex geometric sets which can cover samples of the target class without containing any samples of other classes. According to this framework, we consider a combinatorial classifier based on a family of spheres, each of which is the minimum covering sphere for a subset of positive samples and does not contain any negative samples. We also present a polynomial-time exact algorithm and an incremental randomized algorithm to compute it. In addition, we discuss the soft-classification version and evaluate these algorithms by some numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bousquet, O., Boucheron, S., Lugosi, G.: Theory of classification: A survey of recent advances. ESAIM Probability and Statistics (2004) (to appear)

    Google Scholar 

  2. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  3. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  4. Vapnik, V.N.: The Nature of Statistical Learning Theory, 2nd edn. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  5. Kudo, M., Yanagi, S., Shimbo, M.: Construction of class regions by a randomized algorithm: A randomized subclass method. Pattern Recognition 29, 581–588 (1996)

    Article  Google Scholar 

  6. Takigawa, I., Abe, N., Shidara, Y., Kudo, M.: The boosted/bagged subclass method. International Journal of Computing Anticipatory Systems 14, 311–320 (2004)

    Google Scholar 

  7. ErdÅ‘s, P., Kleitman, D.: Extremal problems among subsets of a set. Discrete Mathematics 8, 281–294 (1974)

    Article  MathSciNet  Google Scholar 

  8. Cannon, A.H., Cowen, L.J.: Approximation algorithms for the class cover problem. Annals of Mathematics and Artificial Intelligence 40, 215–223 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Priebe, C.E., Marchette, D.J., DeVinney, J.G., Socolinsky, D.A.: Classification using class cover catch digraphs. Journal of Classification 20, 3–23 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Marchette, D.J.: Random Graphs for Statistical Pattern Recognition. John Wiley & Sons, Chichester (2004)

    Book  MATH  Google Scholar 

  11. DeVinney, J.G.: The Class Cover Problem and Its Application in Pattern Recognition. Ph.D. Thesis, The Johns Hopkins University (2003)

    Google Scholar 

  12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  13. Cannon, A.H., Ettinger, J.M., Hush, D., Scovel, C.: Machine learning with data dependent hypothesis classes. Journal of Machine Learning Research 2, 335–358 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H.A. (ed.) New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  15. Gärtner, B., Schönher, S.: Fast and robust smallest enclosing balls. In: NeÅ¡etÅ™il, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 325–338. Springer, Heidelberg (1999)

    Google Scholar 

  16. Fischer, K., Gärtner, B., Kutz, M.: Fast smallest-enclosing-ball computation in high dimensions. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 630–641. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Zhou, G.L., Toh, K.C., Sun, J.: Efficient algorithms for the smallest enclosing ball problem. Computational Optimization and Applications (2004) (accepted)

    Google Scholar 

  18. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Takigawa, I., Kudo, M., Nakamura, A. (2005). The Convex Subclass Method: Combinatorial Classifier Based on a Family of Convex Sets. In: Perner, P., Imiya, A. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2005. Lecture Notes in Computer Science(), vol 3587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11510888_10

Download citation

  • DOI: https://doi.org/10.1007/11510888_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26923-6

  • Online ISBN: 978-3-540-31891-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics