Skip to main content

Optimising the Choice of Colours of an Image Database for Dichromats

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3587))

Abstract

Colour appears to gradually play more and more significant role in the modern digital world. However, about eight percent of the population are protanopic and deuteranopic viewers who have difficulties in seeing red and green respectively. In this paper, we identify a correspondence between the 256 standard colours and their dichromatic versions so that the perceived difference between any pair of colours seen by people with normal vision and dichromats is minimised. Colour dissimilarity is measured using the Euclidean metric in the Lab colour space. The optimisation is performed using a randomised approach based on a greedy algorithm. A database comprising 12000 high quality images is employed for calculating frequencies of joint colour appearance used for weighting colour dissimilarity matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Analysis Mach. Intel. 22, 1349–1380 (2000)

    Article  Google Scholar 

  2. Viénot, F., Brettel, H., Ott, L., M’Barek, A.B., Mollon, J.: What do color-blind people see? Nature 376, 127–128 (1995)

    Article  Google Scholar 

  3. Rigden, C.: The eye of the beholder - designing for colour-blind users. British Telecom Engineering 17, 2–6 (1999)

    Google Scholar 

  4. Brettel, H., Viénot, F., Mollon, J.: Computerized simulation of color appearance for dichromats. Journal Optical Society of America 14, 2647–2655 (1997)

    Article  Google Scholar 

  5. Viénot, F., Brettel, H., Mollon, J.: Digital video colourmaps for checking the legibility of displays by dichromats. Color Research Appl. 24, 243–252 (1999)

    Article  Google Scholar 

  6. Kovalev, V.A.: Towards image retrieval for eight percent of color-blind men. In: 17th Int. Conf. on Pattern Recognition (ICPR 2004), Cambridge, UK, vol. 2, pp. 943–946. IEEE Computer Society Press, Los Alamitos (2004)

    Chapter  Google Scholar 

  7. Hunt, R.W.G.: Measuring Color, 2nd edn. Science and Industrial Technology. Ellis Horwood, New York (1991)

    Google Scholar 

  8. Meyer, G.W., Greenberg, D.P.: Color-defective vision and computer graphics displays. IEEE Computer Graphics and Applications 8, 28–40 (1988)

    Article  Google Scholar 

  9. Walraven, J., Alferdinck, J.W.: Color displays for the color blind. In: IS and T/SID Fifth Color Imaging Conference: Color Science, Systems and Appl., Scottsdale, Arizona, pp. 17–22 (1997)

    Google Scholar 

  10. Becker, R.A., Chambers, J.M., Wilks, A.R.: The New S Language. Chapman and Hall, New York (1988)

    MATH  Google Scholar 

  11. Maindonald, J., Braun, J.: Data Analysis and Graphics Using R: An Example-Based Approach. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  12. Kovalev, V., Volmer, S.: Color co-occurrence descriptors for querying-by-example. In: Int. Conf. on Multimedia Modelling, Lausanne, Switzerland, pp. 32–38. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  13. Rautiainen, M., Doermann, D.: Temporal color correlograms for video retrieval. In: 16th Int. Conf. on Pattern Recognition (ICPR 2002), Quebec, Canada, vol. 1, pp. 267–270. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kovalev, V., Petrou, M. (2005). Optimising the Choice of Colours of an Image Database for Dichromats. In: Perner, P., Imiya, A. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2005. Lecture Notes in Computer Science(), vol 3587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11510888_45

Download citation

  • DOI: https://doi.org/10.1007/11510888_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26923-6

  • Online ISBN: 978-3-540-31891-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics