Skip to main content

Dominant Plane Detection Using Optical Flow and Independent Component Analysis

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3587))

  • 2156 Accesses

Abstract

Dominant plane is an area which occupies the largest domain in an image. A dominant plane detection is an essential task for an autonomous navigation of mobile robots equipped with a vision system, since we assume that robots move on the dominant plane. In this paper, we develop an algorithm for the dominant plane detection using optical flow and Independent Component Analysis. Since the optical flow field is a mixture of flows of the dominant plane and the other area, we separate the dominant plane using Independent Component Analysis. Using an initial data as a supervisor signal, the robot detects the dominant plane. For each image in a sequence, the dominant plane corresponds to an independent component. This relation provides us a statistical definition of the dominant plane. Experimental results using a real image sequence show that our method is robust against a non-unique velocity of the mobile robot motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hahnel, D., Triebel, R., Burgard, W., Thrun, S.: Map building with mobile robots in dynamic environments. In: Proc. of the IEEE ICRA 2003 (2003)

    Google Scholar 

  2. Huang, T.S., Netravali, A.N.: Motion and structure from feature correspondences: A review. Proc. of the IEEE 82, 252–268 (1994)

    Article  Google Scholar 

  3. Guilherme, N.D., Avinash, C.K.: Vision for mobile robot navigation: A survey. IEEE Trans. on PAMI 24, 237–267 (2002)

    Google Scholar 

  4. Kang, S.B., Szeliski, R.: 3D environment modeling from multiple cylindrical panoramic images. In: Benosman, R., Kang, S.B. (eds.) Panoramic Vision: Sensors, Theory, Applications, pp. 329–358. Springer, Heidelberg (2001)

    Google Scholar 

  5. Fraundorfer, F.: A map for mobile robots consisting of a 3D model with augmented salient image features. In: 26th Workshop of the Austrian Association for Pattern Recognition, pp. 249–256 (2002)

    Google Scholar 

  6. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12, 43–77 (1994)

    Article  Google Scholar 

  7. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  8. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. of 7th IJCAI, pp. 674–679 (1981)

    Google Scholar 

  9. Mallot, H.A., Bulthoff, H.H., Little, J.J., Bohrer, S.: Inverse perspective mapping simplifies optical flow computation and obstacle detection. Biological Cybernetics 64, 177–185 (1991)

    Article  MATH  Google Scholar 

  10. Enkelmann, W.: Obstacle detection by evaluation of optical flow fields from image sequences. Image and Vision Computing 9, 160–168 (1991)

    Article  Google Scholar 

  11. Santos-Victor, J., Sandini, G.: Uncalibrated obstacle detection using normal flow. Machine Vision and Applications 9, 130–137 (1996)

    Article  Google Scholar 

  12. Hyvarinen, A., Oja, E.: Independent component analysis: algorithms and application. Neural Networks 13, 411–430 (2000)

    Article  Google Scholar 

  13. van Hateren, J., van der Schaaf, A.: Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. of the Royal Society of London, Series B 265, 359–366 (1998)

    Article  Google Scholar 

  14. Hyvarinen, A., Hoyer, P.: Topographic independent component analysis. Neural Computation 13, 1525–1558 (2001)

    Google Scholar 

  15. Bouguet, J.-Y.: Pyramidal implementation of the Lucas Kanade feature tracker description of the algorithm, Intel Corporation, Microprocessor Research Labs, OpenCV Documents (1999)

    Google Scholar 

  16. Hurri, J., Gavert, H., Sarela, J., Hyvarinen, A.: The FastICA package for MATLAB, website: http://www.cis.hut.fi/projects/ica/fastica/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohnishi, N., Imiya, A. (2005). Dominant Plane Detection Using Optical Flow and Independent Component Analysis. In: Perner, P., Imiya, A. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2005. Lecture Notes in Computer Science(), vol 3587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11510888_49

Download citation

  • DOI: https://doi.org/10.1007/11510888_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26923-6

  • Online ISBN: 978-3-540-31891-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics