Birkbeck

UNIVERSITY OF LONDON

BIROn - Birkbeck Institutional Research Online

Fan, Hao and Poulovassilis, Alexandra (2005) Using schema transformation
pathways for data lineage tracing. In: Jackson, M. and Nelson, D. and Stirk,
S. (eds.) Database: Enterprise, Skills and Innovation. Lecture Notes in
Computer Science 3567. Berlin, Germany: Springer-Verlag, pp. 133-144.
ISBN 9783540269731.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/305/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively

contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/305/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

: Bil‘kbeck Birkbeck ePrints

o4 UNIVERSITY OF LONDOMN

.

Birkbeck ePrints: an open access repository of the
research output of Birkbeck College

http://eprints.bbk.ac.uk

Fan, Hao and Poulovassilis, Alexandra (2005). Using
schema transformation pathways for data lineage tracing.
Lecture Notes in Computer Science 3567: 133-144

This is an author-produced version of a paper published in Lecture Notes in

Computer Science (ISSN 0302-9743). This version has been peer-reviewed
but does not include the final publisher proof corrections, published layout or
pagination.

All articles available through Birkbeck ePrints are protected by intellectual
property law, including copyright law. Any use made of the contents should
comply with the relevant law.

Citation for this version:

Fan, Hao and Poulovassilis, Alexandra (2005). Using schema transformation
pathways for data lineage tracing. London: Birkbeck ePrints. Available at:
http://eprints.bbk.ac.uk/archive/00000305

Citation for the publisher’s version:

Fan, Hao and Poulovassilis, Alexandra (2005). Using schema transformation
pathways for data lineage tracing. Lecture Notes in Computer Science 3567:
133-144

http://eprints.bbk.ac.uk
Contact Birkbeck ePrints at lib-eprints@bbk.ac.uk

http://eprints.bbk.ac.uk/
http://eprints.bbk.ac.uk/archive/00000305
http://eprints.bbk.ac.uk/
mailto:lib-eprints@bbk.ac.uk

Using Schema Transfor mation Pathways for Data
Lineage Tracing

Hao Fan, Alexandra Poulovassilis

School of Computer Science and Information Systems, Baki@ollege,
University of London, Malet Street, London WC1E 7HX
{hao,ap @dcs.bbk.ac.uk

Abstract. With the increasing amount and diversity of informationikalge on
the Internet, there has been a huge growth in informatiotesys that need to
integrate data from distributed, heterogeneous data esuftacing the lineage
of the integrated data is one of the problems being addressida warehousing
research. This paper presents a data lineage tracing appbaaed on schema
transformation pathways. Our approach is not limited to gpecific data model
or query language, and would be useful in any data transtiwmntegration
framework based on sequences of primitive schema tranaf@ns.

1 Introduction

A data warehousing system collects data from distributathreomous and heteroge-
neous data sources into a central repository to enablessaygd mining of the inte-
grated information. However, sometimes what we need ismigtto analyse the data in
the integrated database, but also to investigate how nentgigrated information was
derived from the data sources, which is the probletaté lineage tracingDLT). Sup-
porting DLT in data warehousing environments has a numbappfications: in-depth
data analysis, on-line analysis mining (OLAM), scientifat@abases, authorization man-
agement, and materialized view schema evolution [2, 18 8)]1

AutoMed' is a heterogeneous data transformation and integratioerayshich of-
fers the capability to handle data integration across ieltilata models. In the Au-
toMed approach, the integration of schemas is specified &xj@eace of primitive
schema transformation steps, which incrementally adeéte@r rename schema con-
structs, thereby transforming each source schema intatgettschema. We term the
sequence of primitive transformations steps defined foistaming a schemé; into
a schemab, atransformation pathwafrom S; to Ss.

In [11] we discussed how AutoMed metadata can be used to exfine schemas
and the cleansing, transformation and integration presassheterogeneous data ware-
housing environments. In this paper, we focus on how Autolethdata can be used
for tracing the lineage of data in an integrated database.

The outline of this paper is as follows. Section 2 gives aaevf related work.
Section 3 gives an overview of AutoMed, as well as a data mategn example. Section
4 presents our DLT techniques, including the DLT formulaeiigped to handle virtual

1 Seeht t p: // www. doc. i ¢c. ac. uk/ aut omed/

intermediate lineage data and the DLT algorithm operatingga general schema
transformation pathway. Section 5 gives our concludingans

2 Redated Work

The problem of data lineage tracing in data warehousingrenmients has been for-
mally studied by Cuét al. in [8, 6, 7]. In particular, the fundamental definitions redta
ing data lineage, includintuple derivation for an operatoandtuple derivation for a
view, were developed in [8], as were methods for derivation tigevith both set and
bag semantics. Their work has addressed the derivatioimgracoblem using bag se-
mantics and has provided the conceptefivation setandderivation poolfor tracing
data lineage with duplicate elements. Reference [6] alsodnces a way to trace data
lineage for complex views in data warehouses. However, fipecach is limited to the
relational data model.

Another fundamental concept of data lineage is discussedumemanet al. in
[4], namely the difference between “why” provenance andévei provenance. Why-
provenance refers to the source data that had some influentee@xistence of the
integrated data. Where-provenance refers to the actualinl#ée sources from which
the integrated data was extracted.

In our approach, both why- and where-provenance are caesidesing bag seman-
tics. Our previous work [10] defines the notionsadfiect-poolandorigin-poolfor data
lineage tracing in AutoMed — the former derives all of the m@udata that had some
influence on the tracing data, while the latter derives treci$ic data in the sources
from which the tracing data is extracted. In that work we dgwydéormulae for deriv-
ing the affect-pool and origin-pool of a data item in the ext&f a materialised schema
construct created by a single schema transformation steDOr approach is to apply
these formulae on each transformation step in a transf@@mpathway in turn, so as
to obtain the lineage data in stepwise fashion.

Cui and Widom in [7] also discuss the problem of tracing datadge for gen-
eral data warehousing transformations, that is, the censidloperators and algebraic
properties are no longer limited to relational views. Hoamewithout a framework for
expressing general transformations in heterogeneoubatsaenvironments, most of
algorithms in [7] are recalling the view definition and examg each item in the data
source to decide if the item is in the data lineage of the dataghtraced. This can be
expensive if the view definition is a complex one and enunregatll items in the data
source is impractical for large data sets.

Reference [18] proposes a general framework for complitieggraineddata lin-
eagej.e. a specific derivation in the data source, using a limited arhofinformation,
weakand verified inversionabout the processing steps. Based on weak and verified
inversion functions, which must be specified by the tramafdion definer, the paper
defines and traces data lineage for each transformationrstegatabase visualization
environment. However, the system cannot obtain the exaszadje data, only a number
of guarantees about the lineage is provided. Further, fyregiweak and verified in-
version functions for each transformation step is oneromkvior the data warehouse
definer. Moreover, the DLT procedures cannot straightfodlyabe reused when the

data warehouse evolves. Our approach considers the prablgata lineage tracing at
the tuple level and computes the exact lineage data. MoreAuéoMed’s ready sup-
port for schema evolution (see [12]) means that our DLT atlgors can be reapplied if
schema transformation pathways evolve.

One limit of our earlier work described in [10] is that we as®d the transforma-
tion pathway used by our DLT algorithm is fully materialiséd:. new schema con-
structs created along the pathway are materialised. Irtipeaeve need to handle the
situation of virtual or partially materialised transfortiza pathways, in which interme-
diate schema constructs may or may not be materialisedidp#per, we describe an
approach for tracing data lineage along a general schemsfdranation pathway.

3 Overview of AutoMed

AutoMed supports a low-level hypergraph-based data métieM). Higher-level mod-
elling languages are defined in terms of this HDM. For exampievious work has
shown how relational, ER, OO [15], XML [19], flat-file [3] anduttidimensional [11]
data models can be so defined. An HDM schema consists of a seidefs, edges
and constraints, and each modelling construct of a highestimodelling language is
specified as some combination of HDM nodes, edges and conistreor any mod-
elling languageM specified in this way, via the API of AutoMed’s Model Definiti®
Repository [3], AutoMed provides a set of primitive schemamsformations that can
be applied to schema constructs expressetiinin particular, for every construct of
M there is amadd and adelete primitive transformation which add to/delete from a
schema an instance of that construct. For those constrfictd avhich have textual
names, there is alsoraname primitive transformation.

In AutoMed, schemas are incrementally transformed by apglyo them a se-
quence of primitive transformations,...,t.. Each primitive transformation adds,
deletes or renames just one schema construct, expressechésodelling language.
Thus, the intermediate (and indeed the target) schemas omégic constructs of more
than one modelling language.

Eachadd or delete transformation is accompanied by a query specifying thergxt
of the new or deleted construct in terms of the rest of thetcoas in the schema. This
query is expressed in a functional query language?lQlhe queries withiradd and
delete transformations are used by AutoMed’s Global Query Prawrgssevaluate an
IQL query over a global schema in the case of a virtual datgattion scenario. In the
case that the global schema is materialised, AutoMed’s YHealuator can be used
directly on the materialised data.

3.1 SimplelQL

In order to illustrate our DLT algorithm, we use a subset df |Qimple IQL(SIQL), as
the query language in this paper. More complex IQL queriesbeaencoded as a series

21QL is a comprehensions-based functional query languageh Snguages subsume query
languages such as SQL and OQL in expressiveness [5]. Wethefaeader to [14, 17] for
details of IQL and references to work on comprehensionébésactional query languages.

of transformations with SIQL queries on intermediate scaemnstructs. We stress
that although illustrated within a particular query langeayntax, our DLT algorithms
could also be applied to schema transformation pathwaysvimg queries expressed
in other query languages supporting operations on set, idsi collections.

SupposingD, D; ..., D, denote bags of the appropriate type (base collections),
SIQL supports the following queriegr oup D groups a bag of pairB on their first
componentdi sti nct Dremoves duplicates from a bagD applies an aggregation
functionf (which may bemax, i n, count, sumor avg) to a baggc f D groups
a bagD of pairs on their first component and applies an aggregatioationf to the
second component+ is the bag union operator and— is the bagmonusoperator
[1]. SIQL comprehensions are of three form®xy <« Dy;...; X, <« Dy; Ci;...; G,
[X|X < Dy; menber D, y], and[X|X « Dy; not (menber D, y)]. Here, eaclxy,
..., X5, is either a single variable or a tuple of variablgds either a single variable or
value, or a tuple of variables or values, and must includefalariables appearing in
X1,Xn. EachCy, ...,C; is a condition not referring to any base collection. Alsa@lea
variable appearing iR andC,, ...,C; must also appear in sorig, and the variables in
y must appear iX. Finally, a query of the fornmap (AX.e) Dapplies to each element
of a collectionD an anonymous function defined by a lambda abstractior and
returns the resulting collection.

Comprehension syntax can express the common algebraiatapesron collection
types such as sets, bags and lists [5] and such operationkecagadily expressed
in SIQL. In particular, let us consideselection(c), projectiorn(r), join (x), andag-
gregation(«) (union (| J) anddifference(—) are directly supported in SIQL via the
++ and —— operators). The general form of a Select-Project-Join) 8Rdression is
ma(oc(D1 ... <1 D,,)) and this can be expressed as follows in comprehension syn-
tax: [A)XT < Dy;...;X;, < D,;C]. However, since in general the tuple of variables
may not contain all the variables appearingin ..., X, (as is required in SIQL), we
can use the following two transformation steps to expressreegl SPJ expression in
SIQL, wherex includes all of the variables appearingsm,X,,:

vl = [X|XT < Dy;...; X5, < D,; C

v =map (AX.A)vl
The algebraic operatar applies an aggregation function to a collection and thigfun
tionality is captured by thgc operator in SIQL. E.g., supposing the scheme of a col-
lectionDis D(AL, A2, A3) , an expressionap f a3,(D) is expressed in SIQL as:

vli=mp (A{x1,x2,x3}.{x2,x3}) D

v =gc f vl

3.2 An Example Data Integration

In this paper, we will use schemas expressed in a simpléaetdtdata model to illus-
trate our techniques. However, we stress that these tasdmare applicable to schemas
defined inanydata modelling language having been specified within AutdMi&lodel
Definitions Repository, including modelling languagesgemi-structured data [3, 19].
In our simple relational model, there are two kinds of schemstruct:Rel and
Att. The extent of &el construct{R)) is the projection of relatiotk onto its primary
key attributesk, ..., k,,. The extent of eacltt construct{(R, a)) wherea is a non-key

attribute ofR is the projection of? ontoky, ..., k., a. We refer the reader to [15] for an
encoding of a richer relational data model, including thedeiling of constraints.

Suppose thaMAtab(CID, SID, Mark) andIStab(CID, SID, Mark) are two source
relations for a data warehouse respectively storing stgterarks for two departments
MA andIS, in which CID andSID are the course and student IDs. Suppose also that
a relationCourseSum(Dept, CID, Total, Avg) is in the data warehouse which gives the
total and average mark for each course of each department.

The following transformation pathway expresses the schigarsformation and
integration processes in this example. Due to space limitst we have not given
the steps for removing the source relation constructs (tiae this ‘growing’ and
‘shrinking’ of schemas is characteristic of AutoMed scheraasformation pathways).
Schema constructgDetails)) and{(Details, Mark)) are temporary ones which are cre-
ated for integrating the source data and then deleted afteglobal relation is created.

addRel ((Details)) {" MA", k1, k2} [{ k1, k2} « (MAtab))]
++[{" 1S, k1, k2} [{ k1, k2} — ((IStab))];
addAtt ((Details, Mark)) [{"MA, k1, k2, x}[{k1, k2, x} — (MAtab, Mark))]
++[{" 1S, k1, k2, x} [{k1, k2, x} — ((IStab, Mark))];
addRel ((CourseSum)) di stinct [{k, k1}|{k, k1, k2} « ((Details))]
addAtt ((CourseSum, Total)) {x,y, z} [{{x, y}, z} —(gc sum
{{k, k1}, x} [{k, k1, k2, x} < {(Details, Mark))])];
addAtt (CourseSum, Avg)) [{x,y, z} {{x,y}, z} —(gc avg
{{k, k1}, x} |{k, k1, k2, x} «— {(Details, Mark)])];
delAtt ((Details, Mark)) " MA k1, k2, x}[{k1, k2, x} — {(MAtab, Mark))]
++[{" 1S, k1, k2, x} |{k1, k2, x} — (IStab, Mark)];
delRel ((Details)) {" MA", k1, k2} [{ k1, k2} « (MAtab))]
++[{" 1S, k1, k2} [{ k1, k2} — ((IStab))];

Note that some of the queries appearing in the above tranafan steps are not
SIQL but general IQL queries. In such cases, for the purpokéiseage tracing, we
decompose a general IQL query into a sequence of SIQL quariewans of a depth-
first traversal of the IQL query tree. For example, the IQLrgue

{x,y, 2} H{x, y}. 2} — (gc avg [{{k, k1}, x} | {k, k1, k2, x} « ((Details, Mark}})]
is decomposed into following sequence of SIQL queries:

vl =map (AM{k, k1, k2, x} {{k1, k2}, x}) {(Details, Mark))

v2=gc avg vl

v =mp (\{x, y}, z} {x,y, z})v2
In the rest of the paper, our discussion assumes that alieguartransformation steps
are SIQL queries.

4 DataLineage Tracing with AutoM ed Schema Transfor mations

In heterogenous data integration environments, the dataftsrmation and integration
processes can be described using AutoMed schema transifommpathways (see [11]).
Our DLT approach is to use the individual steps of these pajiswio compute the
lineage data of the tracing data by traversing the pathways\erse order one step
at a time. In particular, suppose a data sourbavith schemd_S is transformed into

% DL(t)

group D o, y}{z,y} < D;z =1
sort D DJt
distinct D DIt
aggFun D D
gc _aggFun D {z, y}t{z, y} < Dz =7
D ++Dy; ++...++ D, Vi.Djt
Dy ——D» D |t, D2

XIX1 < Di; ... ;X0 < Dn; Q|| Vi [Zi]Ti Di; i = (AT.T5))]
[X[X — Di; nenber D,y] || Dt [yly — D25 = ())]
[X|X < Di; not (menber D, Y)] D |t, Do
map (AX.e) D [Z|T — D,e =1t
Table 1. DLT Formulae forMtMs

a global databas€D with schemaGS, and the transformation pathwas — GS is
tsy,...,ts,. Given tracing datad belonging to the extent of some schema construct in
@D, we firstly find the transformation step; which creates that construct and obtain
td's lineage,dl;, from ts;. We then continue by tracing the lineage dif from the
remaining transformation pathway, , . . . , ts;_1. We continue in this fashion, until we
obtain the final lineage data from the data sowrbe

Sincedelete transformations do not create schema constructs, theyeamnbred
inthe DLT process. Tracing data lineage with respect torsstcamationmrename (O, O’)
is simple — the lineage data @ is the same as the tracing datadh It only remains
to consideiadd transformations. A singladd transformation step can be expressed as
v=(, in which v is the new schema construct created by the transformatidm as
an SIQL query over the current schema constructs. We havdaimd a DLT formula
for each type of SIQL query which, given tracing datavinevaluates the lineage of
this data from the extents of the schema constructs refedeinw=q. If these extents
and the tracing data are both materialised, Table 1 giveBtieformulae for tracing
the affect-pool of a tupleé, DL(t). The DLT formulae for tracing the origin-pool are
similar and we refer the reader to [10] for a discussion ofdHference between the
affect-pool and the origin-pool.

In Table 1,D|¢ denotes all instances of the tuplén the bagD (i.e. the result of
the query[z|z «— D;z = t]). Since the results of queries of the fognoup Dand
gc f Dare a collection of pairs, in the DLT formulae for these twedes we assume
that the tracing tupleis of the form{a, b}.

The DLT formulae in Table 1 either providederivation tracing query8] specify-
ing the lineage data afor, in some cases, give the lineage data directly. If a foamul
returns a derivation tracing query, we need to evaluate tigeyfo obtain the lineage
data. If a formula returns the lineage data directly, no sy@uation is needed.

If all schema constructs created bgd transformations are materialised, a sim-
ple way to trace the lineage of data in the global datalé@dés to apply the above
DLT formulae on each transformation step in the transfoimndtS — GS in reverse
from GS, finally ending up with the lineage data in the original datarseL.D. Such a
DLT method has been described in our previous work [10]. Haren general trans-

formation pathways not all schema constructs createddalytransformations will be
materialised, and the above simple DLT approach is no loagplicable because it
does not obtain lineage data from a virtual schema construttis paper, we propose
a DLT approach that handles such general transformatidmaas.

4.1 TheApproach

One approach to solving the problem of virtual schema coottmwould be to use Au-
toMed'’s Global Query Processor to evaluate the query erg#tie virtual construct and
compute its extent, so that the above simple DLT approachidmuapplied. However,
this approach is impractical due to the space and time omdehigincurs.

Instead, our approach is to use a data structimeage, to denote lineage data from
the extent of a schema construct. If the construct is méierdi Lineage contains the
actual lineage data. If the construct is virtuaheage contains relevant information
for deriving the lineage data. This information will be udgdsubsequent DLT steps
to evaluate the final lineage data. Edgheage object contains five attribute&i)data,
which is a collection of materialised lineage data or, if ineage data is virtual, the
value null; (i) construct, which is the name of the schema construct whose extent
contains the lineage dat@ji) isVirtual, stating if the lineage data is virtual or n¢tp)
elemStruct, describing the structure of the data in the extent of a &irtiechema con-
struct,e.g. a 2-item tuple{ x1, x2} , or a 3-item tuplg x1, x2, x3} ; (v) constraint,
expressing the constraint specifying the lineage data &atintual schema construct.

For example, suppose lineage data in a schema confriscterived from the
query[{z,y}{z,y} «— D;z = 5], andip is aLineage object expressing the lineage
data. IfD=[{1, 2}, {5, 1}, {5, 2}, {3, 1}] is materialised, thefp will be: Ip.data =
[{5, 1}, {5, 2}] ;Ip.construct="D"; Ip.isVirtual =f al se; [p.elemStruct=nul | ;
and Ip.constraint=nul | . On the other hand, B is a virtual schema construct, then
Ip will be: Ip.data =nul | ; Ip.construct="D"; Ip.isVirtual =t r ue; Ip.elemStruct =
"{x, y}"; andlp.constraint="x=5".

We denote byOldl aLineage object in whichOis the name of the schema con-
struct andd| is the data lineage. If the lineage data is materialiskdwill be the
data itself, otherwisdl will be the form of (S, C), whereS denotes thelemStruct
and C the constraint. For example, the above twidneage objects are denoted by
D[{5, 1}, {5, 2}] andD|({ x, y}, x=5), respectively.

4.2 TheDLT Formulae

It is necessary that our DLT formulae can handle the follgaiour casesMtMs —
both the tracing data and the source data are materia#6; — the tracing data is
materialised and the source data is virtuéMs — the tracing data is virtual and the
source data is materialised; aWtVs — both the tracing data and the source data are
virtual. The DLT formulae for the case MtMs were given in Table 1, and from these
we have derived the DLT formulae for the other three cases:

Case MtVs. There were two kinds of DLT formulae in Table 1: tracing qesrand
real lineage data. Since witlitVS the source data is virtual, we cannot evaluate trac-
ing queries and shineage objects are required to store the information about these

v DL(t)

group D D|({z,y} x =17)
sort D DJt
distinct D DIt
aggFun D D|(any, true)
gc aggFun D D|({z,y},x =7a)
Dy ++Dy ++...++D, Vi.Djt

D — D D |t, D2|(any, true)
XIXT < Di;...;X5n < Dn;q ||Vi.D;|(T5, T = (A\T.T5) t))
XX — Dy; menber 0, y] |[Dulh, Dal(5,5 = (Oe) 1)
[X|X < Di; not (menber D, Y)] D |t, D2|(any, true)
map (AX.e) D D|(Z,e =1)
Table 2. DLT Formulae forMtVs

queries. For example, the tracing quéfy, y}|{z,y} <« D;x = a] is expressed as
D|({z,y},z = a@). Inthe case of real lineage data, the lineage data mightebeabing
data,t, itself or all the items in a source collectian If the lineage data is, it is avail-
able no matter whethdd is materialised or not. If the the lineage data is all items in
a virtual collectionD, it is expressed bip| (any, t r ue) . Table 2 illustrates the DLT
formulae for the case dtVs.

Case VtMs. Virtual tracing data can be created by virtual source datgpdrticu-
lar, there are three kinds of virtual lineage data createdainle 2:(any, true),
({x, y}, x=a), and(X, e=t)3. The DLT formulae folVtMs can be derived by apply-
ing these three kinds of virtual tracing data to the formugii@en in Table 1. In this case,
all source data is materialised, there is no virtual intefiate lineage data created.

For example, suppose the queryisgr oup D. If the virtual tracing tuplet is
(any, true),the lineage dat® L(t) is all data inD, i.e. DL(t) = D. If tis ({ X, Yy},
x=a), DL(t) is all tuples inD with first component equal t@, which is the result of
the query[{z, y}|{z,y} <« D,z = al. If tis (X,e=t), DL(t) is all tuples inD with
first component equal to the first component of the tracing dathich is the result of
the query{{z, y}|{z,y} — D;member [first T|T «— v;e = t]]. We can see that the
virtual view, v, is used in this query. Since the source data is materiaksedan easily
recoverv and evaluate the tracing query.

Table 3 gives the whole list of formulae for the casevtifls with virtual tracing
data of the form(X, e=t). The formulae for the other two kinds of virtual tracing data
can easily be derived.

Case VtVs. The DLT formulae foltVs are similar to the formulae fortMs but in this
case the source data are unavailable. Thus, wéinsage objects to store the virtual
intermediate lineage data.

® Note that in Table 2 the lineage dafa;,=; = ((\Z.77) t)) and (7,7 = ((A\Z.7) t)) in
the 8th and 9th lines are not virtual. Sin¢eis real data and variable tupte contains
all variables appearing i, the expressionAz.z;) t returns real data too. For exam-
ple, supposingE = {z1,z2,x3}, Ti = {z1,23}, andt = {1,2,3}, then(A\z.z) t =
()\{1’171‘2,!E3}.{IE1,!E3}) {1,2,3} = {1,3}

v DL(t)
group D {z,y}{z,y} — D; member [first T|T «— v;e = t] z]
sort D [Z|T «— D;e =1t
di stinct D [Z|T — D;e =1t
aggFun D D
gc aggFun D Hz,y}{z,y} — D; member [first T|T «— V;e = t] x]
D ++Dy ++...++ D, Vi.[T|T <« Dise =t
D, ——Ds DiE —vie =1, s
[XXT < Di; ... ;X5 < Dy; C Vi.[Ti[Ti — Di;
member (map (A\T.T;) [T|T « V; e = t]) T4
[X|X < Dy; nenber D, Y] [Z|T < D1;member D3 J;e = t],
[g[g < D2; member (map (A\T.y) [T|T — v;e =t]) 7]
[X|X < Di; not (menber D, ¥)] Dh|[Z|T —Vv;e=1], D2
map (AX7.e1) D [@r|zT <« D;e =1

Table 3. DLT Formulae forVtMs with tracing datgz, e = t)

For example, suppose the queryisgr oup D. If the virtual tracing tuplet is
(any, true),thevirtuallineage dat® L(¢) isD|(any, t rue) . If tis ({ X, y}, x=a),
the virtualDL(¢) isD|({ x, y}, x=a). If tis (X, e=t), the virtualDL(¢t) isD|({ X, Y},
menber [first X|X — v;e=t] x). Note that, the virtual view is used in this vir-
tual lineage data expression. However, since the sour@ellat virtual, we cannot
recoverv by just evaluating the queny=gr oup D. In this case, AutoMed'’s Global
Query Processor can be used to materialis@ncev is materialised, the virtual trac-
ing datat can also be recovered and this situation reverts to the ¢ade/s which we
discussed earlier. Alternatively, the view definitionvo€an be propagated through the
remaining DLT steps until the end of the process. So far we baly implemented the
first approach and it remains to implement the second appraad investigate their
trade-offs.

4.3 DLT for General Transformation Pathways

Having obtained the DLT formulae for above four cases, lijgedata based on a sin-
gle transformation step is obtained by applying the appatg@iformula to the step’s
query. Our DLT procedure for a single transformation stepli¥4AStep(td, ts) and
its output is the lineage afi in ts's data sources i.e. a list dineage objects which
might contain either materialised or virtual lineage détaour DLT algorithms for a
general transformation pathway, there are two further gataces: tracing the lineage
of a single tuple along a transformation pathway and tratfieglineage of a set of
tuples along a transformation pathway. This is becauseitieade of ond.ineage
object based on a single transformation step might be a flisfireeage objects, if
the transformation step has multiple data sources. Figuiges the two procedures:
oneDLT4APath(td, [ts1, ..., t,]) traces the lineage of a single tracing tupdealong
a transformation pathwdysi, ..., t,], andlistDLT4APath([tdy, ..., td,], [ts1, ..., tSn])
traces the lineage of a list of tracing tuples along a tramnsétion pathway.

Proc oneDLT4APath(td, [ts1, ..., tsn])
{ IpList = g;
for i = n downtol, do
if (td.construct is created bys;)
Num = 1;
IpList = DLT4AStep(td, ts;);
continue; II* End the for loop
restTP = [ts1,...,tSNum];
return listDLT4APath(IpList, restT P);

}
Proc listDLT4APath ([tdy, ..., tdum], [t51, .., tsn])
{ IpList = g;

for i = 1tom, do
IpList = merge(lpList,oneDLT4APath(¢d;, [ts1, ..., tsn]));
return lpList;

}

Fig. 1. DLT Algorithms for a general transformation pathway

oneDLT4APath firstly finds the transformation stefs;, which creates the schema
construct containingd and then calls the procedutd.T4AStep to obtain the lineage
of td based on this transformation st&)L.T4AStep returns a list oLineage objects.
After that, the procedureneDLT4APath calls the proceduréstDLT4APath to further
trace the lineage of this list dfineage objects along the rest of the transformation
pathway (i.e. the steps prior t@;). oneDLT4APath also returns a list of.ineage
objects.listDLT4APath itself callsoneDLT4APath for each itemid; in the tracing
data list to find the entire lineage of the whole list basedharttansformation pathway.
Themerge function is used to avoid duplication of lineage data: A &ygl, might be
in the lineage of two different tracing tuplesgl; andtd; (i # j). If di and all its copies
in a source collection have already been addekpfast as the lineage ofd;, we do
not add them again intlp List as the lineage afd;.

The complexity of the overall DLT process@&n x m) wheren is the number of
add transformations in the transformation pathway ands the number of different
schema constructs referenced in the pathway.

4.4 Example

We use the example described in Section 3.2 to illustrat®aulirapproach. Recall that
some queries appearing in the example are not SIQL queriggbaral IQL queries. In
such situations, we firstly decompose these IQL queriesegoences of SIQL queries.
Supposingd = {" MA’", " MACO1’ , 81} is a tuple in the extent of the construct
{(CourseSum, Avg)) in the global databaséD, the transformation pathway generating
{(CourseSum, Avg)) construct can be expressed as following sequence of viewidefi
tions, where the intermediate construefs . . ., v4 and((Details, Mark)) are virtual:

vl =[{"15,k1, k2, x}|{kl, k2, x} « ((IStab, Mark))]

v2 =[{" MA', k1, k2, x}| {k1, k2, x} «— {(MAtab, Mark}))]
(Details, Mark)) =v1++v2

v3 =map (M k, k1, k2, x} {{k, k1}, x}) {(Details, Mark}))
v4 =gc avg v3

{(CourseSum, Avg)) = map (M {x, v}, z} {x,y, z})v4d
Traversing this transformation pathway in reverse, weiohtés lineage datagl,
with respect to each view as follows:

td = ((CourseSum, Avg))|[{* MA' ,’ MACO1’ , 81}
M v4| dl = va[{{* M\ ,’ MACO1’ }, 81}
= v3| dl =v3|({x, y}, x={’ MA',’ MACO1' })

AEH {(Details, Mark))|dl = ((Details, Mark))|({ k, k1, k2, x}, { k=" MA" ; k1=" MACO1' })

Y% v2| dl v2|({k, k1, k2, x}, {k=" MA ; k1=" MACO1' }),
vi| dl v1|({k, k1, k2, x}, {k=" MA'" ; k1=" MACO1' })
Y ((MAtab, Mark))|dl = (MAtab, Mark)|({ k1, k2, X}, {* MY =" MA" ; k1=" MACO1' })
(1Stab, Mark))|dl {(1Stab, Mark))|({ k1, k2, x}, {’ 1S’ = MA'" ; k1=' MACD1' })
In conclusion, we can see that the lineage frdStab, Mark)) is empty and the lin-
eage form(MAtab, Mark)) is obtained by evaluating the final tracing qurk1, k2, x} |
{k1, k2, x} < (MAtab,Mark)); " MA" =" MA" ;k1=" MACO1’ |.

5 Concluding Remarks

AutoMed schema transformation pathways can be used to &xgeda transformation
and integration processes in heterogeneous data waregoersiironments. This pa-
per has discussed techniques for tracing data lineage alacty pathways and thus
addresses the general DLT problem for heterogeneous dethousses.

We have developed a set of DLT formulae using virtual argusienhandle virtual
intermediate schema constructs and virtual lineage dasedon these formulae, our
algorithms perform data lineage tracing along a generaraehtransformation path-
way, in which eacladd transformation step may create either a virtual or a maiseh
schema construct. The algorithms described in this paper b@en implemented and
tested over simple relational data source and integratezhsas. We are currently de-
ploying them as part of a broader bicinformatics data waushngy project (BIOMAP).

One of the advantages of AutoMed is that its schema transfiwmpathways can
be readily evolved as the data warehouse evolves [12].$mptpper we have shown how
to perform data lineage tracing along such evolvable pagewa

Although this paper has used IQL as the query language inhnthémsformations
are specified, our algorithms are not limited to one specéia anodel or query lan-
guage, and could be applied to other query languages imgledmmon algebraic
operations on collections such as selection, projectioin, aggregation, union and
difference.

Finally, since our algorithms consider in turn each tranmsfation step in a transfor-
mation pathway in order to evaluate lineage data in a stepfaishion, they are useful
not only in data warehousing environments, but also in arig ttansformation and

integration framework based on sequences of primitive reehransformations. For
example, [19, 20] present an approach for integrating bgtsreous XML documents
using the AutoMed toolkit. A schema is automatically exteacfor each XML docu-

ment and transformation pathways are applied to these ssheReference [16] also
discusses how AutoMed can be applied in peer-to-peer deggration settings. Thus,
the DLT approach we have discussed in this paper is readilicaple in peer-to-peer
and semi-structured data integration environments.

References

1

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

J. Albert. Algebraic properties of bag data typesPiac. VLDB’9], pages 211-219. Morgan
Kaufmann, 1991.

P. A. Bernstein and T. Bergstraesser. Meta-data suppodata transformations using mi-
crosoft repositorylEEE Data Engineering Bulletir22(1):9-14, 1999.

. M. Boyd, S. Kittivoravitkul, and C. Lazanitis. AutoMed: BAV data integration system for

heterogeneous data sourcesPhmc. CAISE’'04LNCS. Springer-Verlag, 2004.

. P. Buneman, S. Khanna, and W.C. Tan. Why and Where: A deaization of data prove-

nance. InProc. ICDT’01, volume 1973 of.NCS pages 316—-330. Springer, 2001.

. P. Bunemaret al. Comprehension synta8IGMOD Record23(1):87-96, 1994.
. Y. Cui and J. Widom. Practical lineage tracing in data Wwatsses. IrProc. ICDE’0Q pages

367-378. IEEE Computer Society, 2000.

. Y. Cui and J. Widom. Lineage tracing for general data waush transformations. Broc.

VLDB'01, pages 471-480. Morgan Kaufmann, 2001.

. Y. Cui, J. Widom, and J.L. Wiener. Tracing the lineage awidata in a warehousing

environment ACM Transactions on Database Systems (TQRS(2):179-227, 2000.

. C. Faloutsos, H.V. Jagadish, and N.D. Sidiropoulos. Rertog information from summary

data. InProc. VLDB'97 pages 36—45. Morgan Kaufmann, 1997.

H. Fan and A. Poulovassilis. Tracing data lineage usihgma transformation pathways.
In Knowledge Transformation for the Semantic Wetdlume 95 ofFrontiers in Artificial
Intelligence and Applicationpages 64—-79. I0S Press, 2003.

H. Fan and A. Poulovassilis. Using AutoMed metadata ta darehousing environments.
In Proc. DOLAP’03 pages 86—93. ACM Press, 2003.

H. Fan and A. Poulovassilis. Schema evolution in datekausing environments — a
schema transformation-based approactPrizc. ER'04 LNCS, pages 639653, 2004.

H. Galhardas, D. Florescu, D. Shasha, E. Simon, and Gita.SiImproving data cleaning
quality using a data lineage facility. Proc. DMDW'0], page 3, 2001.

E. Jasper, A. Poulovassilis, and L. Zamboulis. Prongd€)L queries and migrating data in
the AutoMed toolkit. Technical Report 20, Automed Proj@03.

P. McBrien and A. Poulovassilis. A uniform approach teirmodel transformations. In
Proc. CAISE'99volume 1626 oL NCS pages 333-348. Springer, 1999.

P. McBrien and A. Poulovassilis. Defining peer-to-pestadntegration using both as view
rules. InProc. DBISP2P, Berlin, Germany, September, T48CS. Springer, 2003.

A. Poulovassilis. A Tutorial on the IQL Query Languageschinical Report 28, Automed
Project, 2004.

A. Woodruff and M. Stonebraker. Supporting fine-graidath lineage in a database visual-
ization environment. IfProc. ACDE’97 pages 91-102. IEEE Computer Society, 1997.

L. Zamboulis. XML data integration by graph restrucring Proc. BNCOD’04 volume
3112 ofLNCS pages 57-71. Springer-Verlag, 2004.

L. Zamboulis and A. Poulovassilis. Using automed for gath transformation and integra-
tion. In DIWeh volume 3084 of NCS pages 58-69. Springer-Verlag, 2004.

	Cover.pdf
	fan1.pdf
	Cover.pdf
	fan1.pdf

