Abstract
Weighted recombination is a means for improving the local search performance of evolution strategies. It aims to make effective use of the information available, without significantly increasing computational costs per time step. In this paper, the potential speed-up resulting from using rank-based weighted recombination is investigated. Optimal weights are computed for the sphere model, and comparisons with the performance of strategies that do not make use of weighted recombination are presented. It is seen that unlike strategies that rely on unweighted recombination and truncation selection, weighted multirecombination evolution strategies are able to improve on the serial efficiency of the (1+1)-ES on the sphere. The implications of the use of weighted recombination for noisy optimization are studied, and parallels to the use of rescaled mutations are drawn. The cumulative step length adaptation mechanism is formulated for the case of an optimally weighted evolution strategy, and its performance is analyzed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnold, D.V.: Noisy Optimization with Evolution Strategies. Genetic Algorithms and Evolutionary Computation Series. Kluwer Academic Publishers, Boston (2002)
Arnold, D.V.: An analysis of evolutionary gradient search. In: Proc. of the 2004 IEEE Congress on Evolutionary Computation, pp. 47–54. IEEE Press, Piscataway (2004)
Arnold, D.V., Beyer, H.-G.: Local performance of the (μ/μI, λ)-ES in a noisy environment. In: Martin, W.N., Spears, W.M. (eds.) Foundations of Genetic Algorithms, vol. 6, pp. 127–141. Morgan Kaufmann Publishers, San Francisco (2001)
Arnold, D.V., Beyer, H.-G.: Performance analysis of evolution strategies with multi-recombination in high-dimensional IRN-search spaces disturbed by noise. Theoretical Computer Science 289(1), 629–647 (2002)
Arnold, D.V., Beyer, H.-G.: A comparison of evolution strategies with other direct search methods in the presence of noise. Computational Optimization and Applications 24(1), 135–159 (2003)
Arnold, D.V., Beyer, H.-G.: Performance analysis of evolutionary optimization with cumulative step length adaptation. IEEE Transactions on Automatic Control 49(4), 617–622 (2004)
Balakrishnan, N., Rao, C.R.: Order statistics: An introduction. In: Balakrishnan, N., Rao, C.R. (eds.) Handbook of Statistics, vol. 16, pp. 3–24. Elsevier, Amsterdam (1998)
Beyer, H.-G.: Toward a theory of evolution strategies: On the benefit of sex – the (μ/ μ, λ)-theory. Evolutionary Computation 3(1), 81–111 (1995)
Beyer, H.-G.: On the asymptotic behavior of multirecombinant evolution strategies. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature – PPSN IV, pp. 122–133. Springer, Heidelberg (1996)
Beyer, H.-G.: Mutate Large, But Inherit Small! On the Analysis of Rescaled Mutations in (1̃, λ̃)-ES with Noisy Fitness Data. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 109–118. Springer, Heidelberg (1998)
Beyer, H.-G.: Evolutionary algorithms in noisy environments: Theoretical issues and guidelines for practice. Computer Methods in Mechanics and Applied Engineering 186, 239–267 (2000)
Beyer, H.-G.: The Theory of Evolution Strategies. Natural Computing Series. Springer, Heidelberg (2001)
David, H.A., Nagaraja, H.N.: Concomitants of order statistics. In: Balakrishnan, N., Rao, C.R. (eds.) Handbook of Statistics, vol. 16, pp. 487–513. Elsevier, Amsterdam (1998)
Hansen, N.: Verallgemeinerte individuelle Schrittweitenregelung in der Evolutionsstrategie. Mensch & Buch Verlag, Berlin (1998)
Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2), 159–195 (2001)
Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.: Learning probability distributions in continuous evolutionary algorithms – A comparative review. Natural Computing 3(1), 77–112 (2004)
Ostermeier, A., Gawelczyk, A., Hansen, N.: Step-size adaptation based on nonlocal use of selection information. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) Parallel Problem Solving from Nature – PPSN III, pp. 189–198. Springer, Heidelberg (1994)
Rechenberg, I.: Evolutionsstrategie – Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Friedrich Frommann Verlag, Stuttgart (1973)
Rechenberg, I.: Evolutionsstrategie 1994. Friedrich Frommann Verlag, Stuttgart (1994)
Rudolph, G.: Convergence Properties of Evolutionary Algorithms. Verlag Dr.Kovač, Hamburg (1997)
Salomon, R.: Evolutionary search and gradient search: Similarities and differences. IEEE Transactions on Evolutionary Computation 2(2), 45–55 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arnold, D.V. (2005). Optimal Weighted Recombination. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt, L.M. (eds) Foundations of Genetic Algorithms. FOGA 2005. Lecture Notes in Computer Science, vol 3469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11513575_12
Download citation
DOI: https://doi.org/10.1007/11513575_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27237-3
Online ISBN: 978-3-540-32035-7
eBook Packages: Computer ScienceComputer Science (R0)