Abstract
This paper presents the asymptotic convergence analysis of Simulated Annealing, an Artificial Immune System and a General Evolutionary Algorithm for multiobjective optimization problems. In the case of a General Evolutionary Algorithm, we refer to any algorithm in which the transition probabilities use a uniform mutation rule. We prove that these algorithms converge if elitism is used.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aarts, E.H., Korst, J.H.: Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing. Wiley, Chichester (1989)
Coello, C.A.C., Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002)
Cortés, N.C., Coello, C.A.C.: Multiobjective Optimization Using Ideas from the Clonal Selection Principle. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 158–170. Springer, Heidelberg (2003)
de Castro, L.N., Von Zuben, F.J.: Learning and Optimization Using the Clonal Selection Principle. IEEE Transactions on Evolutionary Computation 6(3), 239–251 (2002)
Doob, J.L.: Stochastic Processes. Wiley, New York (1953)
Fogel, D.B.: Evolutionary Computation. Toward a New Philosophy of Machine Intelligence. The Institute of Electrical and Electronic Engineers, New York (1995)
Fogel, L.J.: Artificial Intelligence through Simulated Evolution. Wiley, New York (1966)
Fogel, L.J.: Artificial Intelligence through Simulated Evolution. Forty Years of Evolutionary Programming. Wiley, New York, 199
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)
Kirkpatrick, S., Gellatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220, 671–680 (1983)
Laarhoven, P., Aarts, E.H.: Simulated Annealing: Theory and Applications. D. Reidel, Boston (1987)
Lawler, G.F.: Introduction to Stochastic Processes. Chapman & Hall/CRC, Boca Raton (1995)
Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1998)
de Castro, L.N., Timmis, J.: An Introduction to Artificial Immune Systems: A New Computational Intelligence Paradigm. Springer, Heidelberg (2002)
Černy, V.: A Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm. Journal of Optimization Theory and Applications 45(1), 41–51 (1985)
Rudolph, G., Agapie, A.: Convergence Properties of Some Multi-objective Evolutionary Algorithms. In: Proceedings of the 2000 Conference on Evolutionary Computation, Piscataway, NJ, July 2000, vol. 2, pp. 1010–1016. IEEE Press, Los Alamitos (2000)
Rudolph, G.: Convergence Analysis of Canonical Genetic Algorithms. IEEE Transactions on Neural Networks 5, 96–101 (1994)
Schwefel, H.-P.: Evolution and Optimum Seeking. Wiley, New York (1995)
Seneta, E.: Non-Negative Matrices and Markov Chains, 2nd edn. Springer, New York (1981)
Serafini, P.: Simulated Annealing for Multiple Objective Optimization Problems. In: Tzeng, G.H., Wang, H.F., Wen, U.P., Yu, P.L. (eds.) Proceedings of the Tenth International Conference on Multiple Criteria Decision Making: Expand and Enrich the Domains of Thinking and Application, vol. 1, pp. 283–292. Springer, Heidelberg (1994)
Ulungu, E.L.: Optimisation combinatoire multicritere: Determination de l’ensemble des solutions efficaces et methodes interactives. PhD thesis, Faculté des Sciences, Université de Mons-Hainaut, Mons, Belgium (1993)
Ulungu, E.L., Teghem, J., Fortemps, P.: Heuristics for Multi-Objective Combinatorial Optimization by Simulated Annealing. In: Gu, J., Chen, G., Wei, Q., Wang, S. (eds.) Multiple Criteria Decision Making: Theory and Applications. Proceedings of the 6th National Conference on Multiple Criteria Decision Making, Windsor, UK, Sci-Tech, pp. 228–238 (1995)
Ulungu, E.L., Teghem, J., Fortemps, P., Tuyttens, D.: MOSAMethod: A Tool for Solving Multiobjective Combinatorial Optimization Problems. Journal of Multi-Criteria Decision Analysis 8(4), 221–236 (1999)
Ulungu, E.L., Teghem, J., Ost, C.: Efficiency of Interactive Multi-Objective Simulated Annealing Through a Case Study. Journal of the Operational Research Society 49, 1044–1050 (1998)
Villalobos-Arias, M., Coello Coello, C.A., Hernández-Lerma, O.: Asymptotic Convergence of a Simulated Annealing Algorithm for Multiobjective Optimization Problems. Technical Report EVOCINV-02-2004, Evolutionary Computation Group at CINVESTAV, Sección de Computación, Departamento de Ingenier´ıa Eléctrica, CINVESTAV-IPN,México, D.F, available at (March 2004), http://delta.cs.cinvestav.mx/~ccoello/2004.html
Villalobos-Arias, M., Coello Coello, C.A., Hernández-Lerma, O.: Convergence Analysis of a Multiobjective Artificial Immune System Algorithm. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 226–235. Springer, Heidelberg (2004)
Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Villalobos-Arias, M., Coello, C.A.C., Hernández-Lerma, O. (2005). Asymptotic Convergence of Some Metaheuristics Used for Multiobjective Optimization. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt, L.M. (eds) Foundations of Genetic Algorithms. FOGA 2005. Lecture Notes in Computer Science, vol 3469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11513575_6
Download citation
DOI: https://doi.org/10.1007/11513575_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27237-3
Online ISBN: 978-3-540-32035-7
eBook Packages: Computer ScienceComputer Science (R0)