Abstract
In this paper, we suggest a multiobjective evolutionary algorithm based on a restricted mating pool (REMO) with a separate archive for storing the remaining population. Such archive based algorithms have been used for solving real-world applications, however, no theoretical results are available. In this paper, we present a rigorous running time complexity analysis for the algorithm on two simple discrete pseudo boolean functions and on the multiobjective knapsack problem which is known to be NP-complete. We use two well known simple functions LOTZ (Leading Zeros: Trailing Ones) and a quadratic function. For the knapsack problem we formalize a ( 1+ ε)-approximation set under a constraint on the weights of the items. We then generalize the idea by eliminating the constraints based on a principle of partitioning the items into blocks and analyze REMO on it. We use a simple strategy based on partitioning of the decision space into fitness layers for the analysis.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Garey, M.R., Johnson, D.S.: Computers and Interactability: A Guide to the Theory of NPCompleteness. Freeman, San Francisco (1979)
Hochbaum, D.: Approximation Algorithms for NP-Hard Problems. PWS, Boston (1997)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evolutionary Computation 3, 257–271 (1999)
Knowles, J.D., Corne, D.W.: A Comparison of Encodings and Algorithms forMultiobjective Minimum Spanning Tree Problems. In: Proc. Congress on Evolutionary Computation (CEC 2001), vol. 1, pp. 544–551 (2001)
Kumar, R., Singh, P.K., Chakrabarti, P.P.: Improved quality of solutions for multiobjective spanning tree problem using evolutionary algorithm. In: Bougé, L., Prasanna, V.K. (eds.) HiPC 2004. LNCS, vol. 3296, pp. 494–503. Springer, Heidelberg (2004)
Kumar, R., Rockett, P.I.: Multiobjective genetic algorithm partitioning for hierarchical learning of high-dimensional pattern spaces: A learning-follows-decomposition strategy. IEEE Trans. Neural Networks 9, 822–830 (1998)
Kumar, R.: Codebook design for vector quantization using multiobjective genetic algorithms. In: Proc. PPSN/SAB Workshop on Multiobjective Problem Solving from Nature (2000)
Kumar, R., Parida, P.P., Gupta, M.: Topological design of communication networks using multiobjective genetic optimization. In: Proc. Congress Evolutionary Computation (CEC 2002), pp. 425–430 (2002)
Kumar, R., Banerjee, N.: Multicriteria network design using evolutionary algorithm. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 2179–2190. Springer, Heidelberg (2003)
Laumanns, M., Thiele, L., Zitzler, E., Welzl, E., Deb, K.: Running time analysis of multiobjective evolutionary algorithms on a discrete optimization problem. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 44–53. Springer, Heidelberg (2002)
Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of evolutionary algorithms on pseudo-boolean functions. IEEE Trans. Evolutionary Computation 8, 170–182 (2004)
Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem. Natural Computing 3, 37–51 (2004)
Droste, S., Jansen, T., Wegener, I.: On the Optimization of Unimodal Functions with the (1+1) Evolutionary Algorithm. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 13–22. Springer, Heidelberg (1998)
Jagersküpper, J.: Analysis of simple evolutionary algorithm for minimization in euclidean spaces. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1068–1079. Springer, Heidelberg (2003)
Droste, S., Jansen, T., Wegener, I.: On the Analysis of the (1+1) Evolutionary Algorithm. Theoretical Computer Science 276, 51–81 (2002)
Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary mutations. Evolutionary Computation 7, 167–203 (1999)
Rudolph, G.: How mutation and selection solve long path problems in polynomial expected time. Evolutionary Computation 4, 207–211 (1996)
Wegener, I., Witt, C.: On the analysis of a simple evolutionary algorithm on quadratic pseudo-boolean functions. J. Discrete Algorithms (2002)
Jansen, T., Wegener, I.: The analysis of evolutionary algorithms: a proof that crossover really can help. Algorithmica 34, 47–66 (2002)
Coello, C.A.C., Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary Algorithms for Solving Multiojective Problems. Kluwer, Boston (2002)
Deb, K.: Multiobjective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)
Rudolph, G.: Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kovac̆, Hamburg (1997)
Rudolph, G.: Evolutionary search for minimal elements in partially ordered finite sets. In: Proc. Annual Conference on Evolutionary Programming, pp. 345–353 (1998)
Rudolph, G., Agapie, A.: Convergence properties of some multiobjective evolutionary algorithms. In: Proc. Congress on Evolutionary Computation, pp. 1010–1016 (2000)
Giel, O.: Runtime analysis for a simple multiobjective evolutionary algorithm. Tech-Report, Dept. Computer Science, Univ. Dortmund, Germany (2003)
Thierens, D.: Convergence time analysis for the multi-objective counting ones problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 355–364. Springer, Heidelberg (2003)
Asho, I.: Interactive Knapsacks: Theory and Applications. Ph.D. Thesis, Tech Report No.: A- 2002-13, Department of Computer and Information Sciences, University of Tampere (2002)
Frieze, A., Clarke, M.: Approximation algorithms form-dimensional 0-1 knapsack problem: Worst case and probabilistic analysis. European J. Operations Research 15, 100–109 (1984)
Erlebach, T., Kellerer, H., Pferschy, U.: Approximating Multiobjective Knapsack Problems. Management Science 48, 1603–1612 (2002)
Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problem. J. ACM 22, 463–468 (1984)
Beyer, H.G., Schwefel, H.P., Wegener, I.: How to Analyse Evolutionary Algorithms? Theoretical Computer Science 287, 101–130 (2002)
Scharnow, J., Tinnefeld, K., Wegener, I.: Fitness landscapes based on sorting and shortest path problems. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 54–63. Springer, Heidelberg (2002)
Droste, S., Jansen, T., Tinnefeld, K., Wegener, I.: A new framework for the valuation of algorithms for black-box optimization. In: Proc. Foundations of Genetic Algorithms Workshop (FOGA VII), pp. 197–214 (2002)
Deb, K., et al.: A Fast Non-Dominated Sorting Genetic Algorithm for Multiobjective Optimization: NSGA-II. In: Proc. Parallel Problem Solving from Nature (PPSN-VI). LNCS, pp. 849–858 (2000)
Knowles, J.D., Corne, D.W.: Approximating the Non-Dominated Front Using the Pareto Achieved Evolution Strategy. Evolutionary Computation 8, 149–172 (2000)
Kumar, R., Rockett, P.I.: Improved Sampling of the Pareto-front in Multiobjective Genetic Optimization by Steady-State Evolution: A Pareto Converging Genetic Algorithm. Evolutionary Computation 10, 283–314 (2002)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: Proc. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, EUROGEN (2001)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evolutionary Computation 7, 117–132 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kumar, R., Banerjee, N. (2005). Running Time Analysis of a Multiobjective Evolutionary Algorithm on Simple and Hard Problems. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt, L.M. (eds) Foundations of Genetic Algorithms. FOGA 2005. Lecture Notes in Computer Science, vol 3469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11513575_7
Download citation
DOI: https://doi.org/10.1007/11513575_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27237-3
Online ISBN: 978-3-540-32035-7
eBook Packages: Computer ScienceComputer Science (R0)