Abstract
In this paper, Ginsberg’s/Fitting’s theory of bilattices is invoked as a natural accommodation and powerful generalization to both intuitionistic fuzzy sets (IFSs) and interval-valued fuzzy sets (IVFSs), serving on one hand to clarify the exact nature of the relationship between these two common extensions of fuzzy sets, and on the other hand providing a general and intuitively attractive framework for the representation of uncertain and potentially conflicting information.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arieli, O., Avron, A.: Reasoning with logical bilattices. Journal of Logic, Language, and Information 5(1), 25–63 (1996)
Arieli, O., Avron, A.: Bilattices and paraconsistency. In: Frontiers of Paraconsistent Logic, pp. 11–27. Research Studies Press (2000)
Arieli, O., Cornelis, C., Deschrijver, G., Kerre, E.: Relating intuitionistic fuzzy sets and interval-valued fuzzy sets through bilattices. In: Applied Computational Intelligence, pp. 57–64. World Scientific, Singapore (2004)
Atanassov, K.T.: Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia (deposed in Central Sci.-Technical Library of Bulg. Acad. of Sci., 1697/84), in Bulgarian (1983)
Atanassov, K.T.: Remark on a property of the intuitionistic fuzzy interpretation triangle. Notes on Intuitionistic Fuzzy Sets 8, 8–37 (2002)
Belnap, N.D.: How a computer should think. In: Ryle, G. (ed.) Contemporary Aspects of Philosophy, pp. 30–56. Oriel Press (1977)
Belnap, N.D.: A useful four-valued logic. In: Modern Uses of Multiple-Valued Logic, pp. 7–37. Reidel Publishing Company (1977)
Chang, C.: Algebraic analysis of many valued logics. Trans. AMS 93, 74–80 (1958)
Cornelis, C.: Two-sidedness in the representation and processing of imprecise information, Ph. D. Thesis, Ghent University (2004)
Cornelis, C., Atanassov, K.T., Kerre, E.: Intuitionistic fuzzy sets and interval-valued fuzzy sets: a comparison. In: Proc. EUSFLAT 2003, pp. 159–163 (2003)
Cornelis, C., Deschrijver, G., Kerre, E.: Implication in intuitionistic and interval-valued fuzzy set theory: Construction, classification, application. International Journal of Approximate Reasoning 35(1), 55–95 (2004)
Deschrijver, G., Cornelis, C., Kerre, E.: Square and triangle: a comparison. In: Proc. IPMU 2004, pp. 1389–1396 (2004)
Deschrijver, G., Kerre, E.: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and Systems 133(2), 227–235 (2003)
Fitting, M.: Personal communication
Fitting, M.: Bilattices and the semantics of logic programming. Journal of Logic Programming 11(2), 91–116 (1991)
Fitting, M.: Kleene’s logic, generalized. Logic and Computation 1, 797–810 (1992)
Fortemps, P., Słowiński, R.: A graded quadrivalent logic for ordinal preference modelling. Fuzzy Optimization and Decision Making 1, 93–111 (2002)
Gargov, G.: Knowledge, uncertainty and ignorance in logic: bilattices and beyond. Journal of Applied Non-Classical Logics 9(2–3), 195–283 (1999)
Ginsberg, M.L.: Multi-valued logics: A uniform approach to reasoning in artificial intelligence. Computer Intelligence 4, 256–316 (1988)
Goguen, J.: L–fuzzy sets. Journal Math. Anal. Appl. 18, 145–174 (1967)
Jenei, S., De Baets, B.: On the direct decomposability of t-norms onproduct lattices. Fuzzy Sets and Systems 139(3), 699–707 (2003)
Messing, B.: Combining knowledge with many-valued logics. Data and Knowledge Engineering 23, 297–315 (1997)
Nelken, R., Francez, N.: Bilattices and the semantics of natural language questions. Linguistic and Philosophy 25(1), 37–64 (2002)
Takeuti, G., Titani, S.: Intuitionistic fuzzy logic and intuitionistic fuzzy sets theory. Journal of Symbolic Logic 49, 851–866 (1984)
Tsoukiàs, A., Vincke, P.: Extended preference structures in mcda. In: Clímaco, J. (ed.) Multi-criteria Analysis, pp. 37–50. Springer, Heidelberg (1997)
Turunen, E.: Mathematics behind fuzzy logic. Advances in Soft Computing (1999)
Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arieli, O., Cornelis, C., Deschrijver, G., Kerre, E. (2005). Bilattice-Based Squares and Triangles. In: Godo, L. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2005. Lecture Notes in Computer Science(), vol 3571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11518655_48
Download citation
DOI: https://doi.org/10.1007/11518655_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27326-4
Online ISBN: 978-3-540-31888-0
eBook Packages: Computer ScienceComputer Science (R0)