Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3571))

Abstract

In this paper, Ginsberg’s/Fitting’s theory of bilattices is invoked as a natural accommodation and powerful generalization to both intuitionistic fuzzy sets (IFSs) and interval-valued fuzzy sets (IVFSs), serving on one hand to clarify the exact nature of the relationship between these two common extensions of fuzzy sets, and on the other hand providing a general and intuitively attractive framework for the representation of uncertain and potentially conflicting information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arieli, O., Avron, A.: Reasoning with logical bilattices. Journal of Logic, Language, and Information 5(1), 25–63 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arieli, O., Avron, A.: Bilattices and paraconsistency. In: Frontiers of Paraconsistent Logic, pp. 11–27. Research Studies Press (2000)

    Google Scholar 

  3. Arieli, O., Cornelis, C., Deschrijver, G., Kerre, E.: Relating intuitionistic fuzzy sets and interval-valued fuzzy sets through bilattices. In: Applied Computational Intelligence, pp. 57–64. World Scientific, Singapore (2004)

    Google Scholar 

  4. Atanassov, K.T.: Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia (deposed in Central Sci.-Technical Library of Bulg. Acad. of Sci., 1697/84), in Bulgarian (1983)

    Google Scholar 

  5. Atanassov, K.T.: Remark on a property of the intuitionistic fuzzy interpretation triangle. Notes on Intuitionistic Fuzzy Sets 8, 8–37 (2002)

    Google Scholar 

  6. Belnap, N.D.: How a computer should think. In: Ryle, G. (ed.) Contemporary Aspects of Philosophy, pp. 30–56. Oriel Press (1977)

    Google Scholar 

  7. Belnap, N.D.: A useful four-valued logic. In: Modern Uses of Multiple-Valued Logic, pp. 7–37. Reidel Publishing Company (1977)

    Google Scholar 

  8. Chang, C.: Algebraic analysis of many valued logics. Trans. AMS 93, 74–80 (1958)

    Google Scholar 

  9. Cornelis, C.: Two-sidedness in the representation and processing of imprecise information, Ph. D. Thesis, Ghent University (2004)

    Google Scholar 

  10. Cornelis, C., Atanassov, K.T., Kerre, E.: Intuitionistic fuzzy sets and interval-valued fuzzy sets: a comparison. In: Proc. EUSFLAT 2003, pp. 159–163 (2003)

    Google Scholar 

  11. Cornelis, C., Deschrijver, G., Kerre, E.: Implication in intuitionistic and interval-valued fuzzy set theory: Construction, classification, application. International Journal of Approximate Reasoning 35(1), 55–95 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Deschrijver, G., Cornelis, C., Kerre, E.: Square and triangle: a comparison. In: Proc. IPMU 2004, pp. 1389–1396 (2004)

    Google Scholar 

  13. Deschrijver, G., Kerre, E.: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and Systems 133(2), 227–235 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fitting, M.: Personal communication

    Google Scholar 

  15. Fitting, M.: Bilattices and the semantics of logic programming. Journal of Logic Programming 11(2), 91–116 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fitting, M.: Kleene’s logic, generalized. Logic and Computation 1, 797–810 (1992)

    Article  MathSciNet  Google Scholar 

  17. Fortemps, P., Słowiński, R.: A graded quadrivalent logic for ordinal preference modelling. Fuzzy Optimization and Decision Making 1, 93–111 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gargov, G.: Knowledge, uncertainty and ignorance in logic: bilattices and beyond. Journal of Applied Non-Classical Logics 9(2–3), 195–283 (1999)

    MATH  MathSciNet  Google Scholar 

  19. Ginsberg, M.L.: Multi-valued logics: A uniform approach to reasoning in artificial intelligence. Computer Intelligence 4, 256–316 (1988)

    Google Scholar 

  20. Goguen, J.: L–fuzzy sets. Journal Math. Anal. Appl. 18, 145–174 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jenei, S., De Baets, B.: On the direct decomposability of t-norms onproduct lattices. Fuzzy Sets and Systems 139(3), 699–707 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Messing, B.: Combining knowledge with many-valued logics. Data and Knowledge Engineering 23, 297–315 (1997)

    Article  MATH  Google Scholar 

  23. Nelken, R., Francez, N.: Bilattices and the semantics of natural language questions. Linguistic and Philosophy 25(1), 37–64 (2002)

    Article  Google Scholar 

  24. Takeuti, G., Titani, S.: Intuitionistic fuzzy logic and intuitionistic fuzzy sets theory. Journal of Symbolic Logic 49, 851–866 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tsoukiàs, A., Vincke, P.: Extended preference structures in mcda. In: Clímaco, J. (ed.) Multi-criteria Analysis, pp. 37–50. Springer, Heidelberg (1997)

    Google Scholar 

  26. Turunen, E.: Mathematics behind fuzzy logic. Advances in Soft Computing (1999)

    Google Scholar 

  27. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arieli, O., Cornelis, C., Deschrijver, G., Kerre, E. (2005). Bilattice-Based Squares and Triangles. In: Godo, L. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2005. Lecture Notes in Computer Science(), vol 3571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11518655_48

Download citation

  • DOI: https://doi.org/10.1007/11518655_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27326-4

  • Online ISBN: 978-3-540-31888-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics