Skip to main content

Generating Fuzzy Models from Deep Knowledge: Robustness and Interpretability Issues

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3571))

Abstract

The most problematic and challenging issues in fuzzy modeling of nonlinear system dynamics deal with robustness and interpretability. Traditional data-driven approaches, especially when the data set is not adequate, may lead to a model that results to be either unable to reproduce the system dynamics or numerically unstable or unintelligible. This paper demonstrates that Qualitative Reasoning plays a crucial role to significantly improve both robustness and interpretability. In the modeling framework we propose both fuzzy partition of input-output variables and the fuzzy rule base are built on the available deep knowledge represented through qualitative models. This leads to a clear and neat model structure that does describe the system dynamics, and the parameters of which have a physically significant meaning. Moreover, it allows us to properly constrain the parameter optimization problem, with a consequent gain in numerical stability. The obtained substantial improvement of model robustness and interpretability in “actual” physical terms lays the groundwork for new application perspectives of fuzzy models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jang, J.: Anfis: Adaptive network based fuzzy inference system. IEEE Trans. on Systems, Man and Cybernetics 23, 665–685 (1993)

    Article  Google Scholar 

  2. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. on Systems, Man and Cybernetics 15, 116–132 (1985)

    MATH  Google Scholar 

  3. Wang, L., Mendel, J.: Generating fuzzy rules by learning from examples. IEEE Trans. on Systems, Man and Cybernetics 22, 1414–1427 (1992)

    Article  MathSciNet  Google Scholar 

  4. Wang, L.: Adaptive Fuzzy Systems and Control: design and stability analysis. University of California at Berkeley. Prentice–Hall, Englewood Cliff (1994)

    Google Scholar 

  5. Bellazzi, R., Guglielmann, R., Ironi, L.: How to improve fuzzy-neural system modeling by means of qualitative simulation. IEEE Trans. on Neural Network 11, 249–253 (2000)

    Article  Google Scholar 

  6. Bellazzi, R., Guglielmann, R., Ironi, L., Patrini, C.: A hybrid input-output approach to model metabolic systems: An application to intracellular thiamine kinetics. Journal of Biomedical Informatics 34, 221–248 (2001)

    Article  Google Scholar 

  7. Kuipers, B.J.: Qualitative Reasoning: modeling and simulation with incomplete knowledge. MIT Press, Cambridge (1994)

    Google Scholar 

  8. D’Ambrosio, B.: Qualitative process theory using linguistic variables. Springer, New-York (1989)

    Google Scholar 

  9. Kim, G., Fishwick, P.: A validation method using fuzzy simulation in an object oriented physical modeling framework. In: Proc. SPIE Aerosense Conference, Orlando, Florida (1998)

    Google Scholar 

  10. Shen, Q., Leitch, R.: Fuzzy qualitative simulation. IEEE Trans. on Systems, Man and Cybernetics 23, 1038–1061 (1993)

    Article  Google Scholar 

  11. Ljung, L.: System Identification - Theory for the User. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  12. Mamdani, E.: Applications of fuzzy algorithms for simple dynamic plant. Proc. IEE 121, 1585–1588 (1974)

    Google Scholar 

  13. Abe, S., Lan, M.: Fuzzy rules extraction directly from numerical data for function approximation. IEEE Trans. on Systems, Man and Cybernetics 25, 119–129 (1995)

    Article  MathSciNet  Google Scholar 

  14. Horikawa, S., Furuhashi, T., Uchikawa, Y.: On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm. IEEE Trans. on Neural Networks 3, 801–814 (1992)

    Article  Google Scholar 

  15. Pomares, H., Rojas, I., Gonzales, J., Prieto, A.: Structure identification in complete rule-based fuzzy systems. IEEE Trans. on Fuzzy Systems 10, 349–359 (2002)

    Article  Google Scholar 

  16. Bezdek, J.: Pattern recognition with fuzzy objective function algoritms. Plenum, New York (1981)

    Google Scholar 

  17. Sugeno, M., Yasukawa, T.: A fuzzy-logic based approach to qualitative modeling. IEEE Trans. on Fuzzy Systems 1, 7–31 (1993)

    Article  Google Scholar 

  18. Tikhonov, A., Arsenin, V.: Solutions of ill-posed problems. Winston, Washington (1977)

    MATH  Google Scholar 

  19. Jin, Y.: Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement. IEEE Trans. on Fuzzy Systems 8, 212–221 (2000)

    Article  Google Scholar 

  20. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  21. Zeng, X., Singh, M.: Approximation accuracy analysis of fuzzy systems as functions approximators. IEEE Trans. on Fuzzy Systems 4, 44–63 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guglielmann, R., Ironi, L. (2005). Generating Fuzzy Models from Deep Knowledge: Robustness and Interpretability Issues. In: Godo, L. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2005. Lecture Notes in Computer Science(), vol 3571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11518655_51

Download citation

  • DOI: https://doi.org/10.1007/11518655_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27326-4

  • Online ISBN: 978-3-540-31888-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics