Abstract
JHU/APL continued to explore the use of knowledge-light methods for multilingual retrieval during the CLEF 2004 evaluation. We relied on the language-neutral techniques of character n-gram tokenization, pre-translation query expansion, statistical translation using aligned parallel corpora, fusion from disparate retrievals, and reliance on language similarity when resources are scarce. We participated in the monolingual and bilingual evaluations. Our results support the claims that n-gram based retrieval is highly effective; that fusion of multiple retrievals is helpful in bilingual retrieval; and, that reliance on language similarity in lieu of translation can outperform a high performing system using abundant translation resources and a less similar query language.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Church, K.W.: Char_align: A program for aligning parallel texts at the character level. In: Proceedings of the 31st Annual Meeting of the Association for Computational Linguistics, pp. 1–8 (1993)
Demner-Fushman, D., Oard, D.W.: The effect of bilingual term list size on dictionary-based cross-language information retrieval. In: Proceedings of the 36th Hawaii International Conference on System Sciences (2003)
Franz, M., McCarley, J.S., Ward, T., Zhu, W.: Quantifying the Utility of Parallel Corpora. In: Proceedings of the 24th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2001), pp. 398–399 (2001)
Hiemstra, D.: Using Language Models for Information Retrieval. Ph. D. Thesis, Center for Telematics and Information Technology, The Netherlands (2000)
Jelinek, F., Mercer, R.: Interpolated Estimation of Markov Source Parameters from Sparse Data. In: Gelsema, E., Kanal, L.N. (eds.) Pattern Recognition in Practice, North Holland, pp. 381–402 (1980)
Koehn, P.: Europarl: A multilingual corpus for evaluation of machine translation (unpublished), http://www.isi.edu/koehn/publications/europarl/
McNamee, P., Mayfield, J.: Comparing Cross-Language Query Expansion Techniques by Degrading Translation Resources. In: The Proceedings of the 25th Annual International Conference on Research and Development in Information Retrieval, Tampere, Finland, pp. 159–166 (2002)
McNamee, P., Mayfield, J.: JHU/APL Experiments in Tokenization and Non-Word Translation. In: Peters, C., Gonzalo, J., Braschler, M., Kluck, M. (eds.) CLEF 2003. LNCS, vol. 3237, pp. 19–28. Springer, Heidelberg (2004)
McNamee, P., Mayfield, J.: Character N-gram Tokenization for European Language Text Retrieval. Information Retrieval 7(1-2), 73–97 (2004)
Miller, D., Leek, T., Schwartz, R.: A hidden Markov model information retrieval system. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Berkeley, California, pp. 214–221 (1999)
Peters, C., Braschler, M., Di Nunzio, G., Ferro, N.: CLEF 2004: Ad-Hoc Track Overview and Results Analysis. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 10–26. Springer, Heidelberg (2005)
Pirkola, A., Hedlund, T., Keskusalo, H., Järvelin, K.: Dictionary-Based Cross-Language Information Retrieval: Problems, Methods, and Research Findings. Information Retrieval 4, 209–230 (2001)
Xu, J., Weischedel, R.: Cross-lingual Information Retrieval Using Hidden Markov Models. In: The Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, EMNLP/VLC-2000 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
McNamee, P., Mayfield, J. (2005). Cross-Language Retrieval Using HAIRCUT at CLEF 2004. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds) Multilingual Information Access for Text, Speech and Images. CLEF 2004. Lecture Notes in Computer Science, vol 3491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11519645_5
Download citation
DOI: https://doi.org/10.1007/11519645_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27420-9
Online ISBN: 978-3-540-32051-7
eBook Packages: Computer ScienceComputer Science (R0)