Abstract
The ImageCLEF task of CLEF has a main goal in the retrieval of images from multi–lingual collections. The 2003 imageCLEF saw no group using the visual information of images, which is inherently language independent. The query topics of the St. Andrews collection are defined in a way that makes visual retrieval hard as visual similarity plays a marginal role whereas semantics and background knowledge are extremely important, which can only be obtained from text. This article describes the submission of an entirely visual result. It also proposes improvements for visual retrieval systems with the current data. Section explains possible ways to make this query task more appealing to visual retrieval research groups, explaining problems of visual retrieval and what The task can do to overcome present problems. A benchmarking event is needed for visual information retrieval to remove barriers in performance. ImageCLEF can be this event and identify areas where visual retrieval might be better than textual and vice–versa. The combination of visual and textual features is an important field where research is needed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content–based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)
Goodrum, A.: Image information retrieval: An overview of current research. Journal of Information Science Research 3 (2000)
Gunther, N.J., Beretta, G.: A benchmark for image retrieval using distributed systems over the internet: BIRDS–I. Technical report, HP Labs, Palo Alto, Technical Report HPL–2000–162, San Jose (2001)
Smith, J.R.: Image retrieval evaluation. In: IEEE Workshop on Content–based Access of Image and Video Libraries (CBAIVL 1998), Santa Barbara, CA, USA, pp. 112–113 (1998)
Müller, H., Müller, W., Squire, D.M., Marchand-Maillet, S., Pun, T.: Performance evaluation in content–based image retrieval: Overview and proposals. Pattern Recognition Letters 22, 593–601 (2001)
Leung, C., Ip, H.: Benchmarking for content–based visual information search. In: Laurini, R. (ed.) VISUAL 2000. LNCS, vol. 1929, pp. 442–456. Springer, Heidelberg (2000)
Narasimhalu, A.D., Kankanhalli, M.S., Wu, J.: Benchmarking multimedia databases. Multimedia Tools and Applications 4, 333–356 (1997)
Harman, D.: Overview of the first Text REtrieval Conference (TREC–1). In: Proceedings of the first Text REtrieval Conference (TREC–1), Washington DC, USA, pp. 1–20 (1992)
Savoy, J.: Report on clef–2001 experiments. In: Peters, C., et al. (eds.) CLEF 2001. LNCS, vol. 2406, pp. 27–43. Springer, Heidelberg (2001)
Clough, P., Sanderson, M.: The clef 2003 cross language image retrieval task. In: Peters, C., et al. (eds.) CLEF 2003. LNCS, vol. 3237, pp. 581–593. Springer, Heidelberg (2004)
Clough, P., Sanderson, M., Müller, H.: A proposal for the clef cross language image retrieval track (imageclef) 2004. In: Enser, P.G.B., et al. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 243–251. Springer, Heidelberg (2004)
La Cascia, M., Sethi, S., Sclaroff, S.: Combining textual and visual cues for content–based image retrieval on the world wide web. In: IEEE Workshop on Content–based Access of Image and Video Libraries (CBAIVL 1998), Santa Barbara, CA, USA (1998)
Squire, D.M., Müller, W., Müller, H., Pun, T.: Content–based query of image databases: inspirations from text retrieval. In: Ersboll, B.K., Johansen, P. (eds.) Pattern Recognition Letters (Selected Papers from The 11th Scandinavian Conference on Image Analysis SCIA 1999), vol. 21, pp. 1193–1198 (2000)
Gevers, T., Smeulders, A.W.M.: A comparative study of several color models for color image invariants retrieval. In: Proceedings of the First International Workshop ID-MMS 1996, Amsterdam, The Netherlands, pp. 17–26 (1996)
Forsyth, D.A.: Benchmarks for storage and retrieval in multimedia databases. In: Storage and Retrieval for Media Databases. SPIE Proceedings, vol. 4676, pp. 240–247 (2002) (SPIE Photonics West Conference)
Müller, H., Müller, W., Squire, D.M., Marchand-Maillet, S., Pun, T.: Strategies for positive and negative relevance feedback in image retrieval. In: Sanfeliu, A., Villanueva, J.J., Vanrell, M., Alcézar, R., Eklundh, J.O., Aloimonos, Y. (eds.) Proceedings of the 15th International Conference on Pattern Recognition (ICPR 2000), Barcelona, Spain, pp. 1043–1046. IEEE, Los Alamitos (2000)
Santini, S., Jain, R.: Gabor space and the development of preattentive similarity. In: Proceedings of the 13th International Conference on Pattern Recognition (ICPR 1996), Vienna, Austria, pp. 40–44. IEEE, Los Alamitos (1996)
Müller, H., Marchand-Maillet, S., Pun, T.: The truth about corel–evaluation in image retrieval. In: Lew, M., Sebe, N., Eakins, J.P. (eds.) CIVR 2002. LNCS, vol. 2383, p. 38. Springer, Heidelberg (2002)
Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S.: Relevance feedback: A power tool for interactive content–based image retrieval. IEEE Transactions on Circuits and Systems for Video Technology 8, 644–655 (1998) (Special Issue on Segmentation, Description, and Retrieval of Video Content)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Müller, H., Geissbühler, A. (2005). How to Visually Retrieve Images from the St. Andrews Collection Using GIFT. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds) Multilingual Information Access for Text, Speech and Images. CLEF 2004. Lecture Notes in Computer Science, vol 3491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11519645_62
Download citation
DOI: https://doi.org/10.1007/11519645_62
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27420-9
Online ISBN: 978-3-540-32051-7
eBook Packages: Computer ScienceComputer Science (R0)