Abstract
We prove new lower bounds for locally decodable codes and private information retrieval. We show that a 2-query LDC encoding n-bit strings over an ℓ-bit alphabet, where the decoder only uses b bits of each queried position, needs code length \(m=exp\left(\Omega\left(\frac{n}{2^{b}{\sum_{i=0}^{b}}(^{l}_{i})}\right)\right)\)
Similarly, a 2-server PIR scheme with an n-bit database and t-bit queries, where the user only needs b bits from each of the two ℓ-bit answers, unknown to the servers, satisfies \(t=\Omega \left(\frac{n}{2^{b}\sum_{i=0}^{b}(^{l}_{i})}\right)\) This implies that several known PIR schemes are close to optimal. Our results generalize those of Goldreich et al. [8], who proved roughly the same bounds for linear LDCs and PIRs. Like earlier work by Kerenidis and de Wolf [12], our classical bounds are proved using quantum computational techniques. In particular, we give a tight analysis of how well a 2-input function can be computed from a quantum superposition of both inputs.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ambainis, A.: Upper bound on communication complexity of private information retrieval. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 401–407. Springer, Heidelberg (1997)
Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and a lower bound for 1-way quantum automata. In: Proceedings of 31st ACM STOC, pp. 697–704 (1999)
Babai, L., Fortnow, L., Levin, L., Szegedy, M.: Checking computations in polylogarithmic time. In: Proceedings of 23rd ACM STOC, pp. 21–31 (1991)
Beimel, A., Ishai, Y.: Information-theoretic private information retrieval: A unified construction. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 912–926. Springer, Heidelberg (2001)
Beimel, A., Ishai, Y., Kushilevitz, E.: General constructions for information-theoretical Private Information Retrieval, Manuscript available on Amos Beimel’s homepage. Includes [4] (2004)
Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.: Breaking the O(n 1/(2k − 1)) barrier for information-theoretic Private Information Retrieval. In: Proceedings of 43rd IEEE FOCS, pp. 261–270 (2002)
Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. Journal of the ACM 45(6), 965–981 (1998); Earlier version in FOCS 1995
Goldreich, O., Karloff, H., Schulman, L., Trevisan, L.: Lower bounds for linear locally decodable codes and private information retrieval. In: Proceedings of 17th IEEE Conference on Computational Complexity, pp. 175–183 (2002)
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge Univ. Press, Cambridge (1985)
Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-correcting codes. In: Proceedings of 32nd ACM STOC, pp. 80–86 (2000)
Kerenidis, I.: Quantum multiparty communication complexity and circuit lower bounds (April 12, 2005); quant-ph/0504087
Kerenidis, I., de Wolf, R.: Exponential lower bound for 2-query locally decodable codes via a quantum argument. Journal of Computer and Systems Sciences 69(3), 395–420 (2004); Earlier version in STOC 2003 (2003) quant-ph/0208062
Mann, E.: Private access to distributed information. Master’s thesis, Technion - Israel Institute of Technology, Haifa (1998)
Nayak, A.: Optimal lower bounds for quantum automata and random access codes. In: Proceedings of 40th IEEE FOCS, pp. 369–376 (1999); quant-ph/9904093
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wehner, S., de Wolf, R. (2005). Improved Lower Bounds for Locally Decodable Codes and Private Information Retrieval. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds) Automata, Languages and Programming. ICALP 2005. Lecture Notes in Computer Science, vol 3580. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11523468_115
Download citation
DOI: https://doi.org/10.1007/11523468_115
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27580-0
Online ISBN: 978-3-540-31691-6
eBook Packages: Computer ScienceComputer Science (R0)