Abstract
Thorup and Zwick showed that for any integer k≥ 1, it is possible to preprocess any positively weighted undirected graph G=(V,E), with |E|=m and |V|=n, in Õ(kmn \(^{\rm 1/{\it k}}\)) expected time and construct a data structure (a (2k –1)-approximate distance oracle) of size O(kn \(^{\rm 1+1/{\it k}}\)) capable of returning in O(k) time an approximation \(\hat{\delta}(u,v)\) of the distance δ(u,v) from u to v in G that satisfies \(\delta(u,v) \leq \hat{\delta}(u,v) \leq (2k -1)\cdot \delta(u,v)\), for any two vertices u,v∈ V. They also presented a much slower Õ(kmn) time deterministic algorithm for constructing approximate distance oracle with the slightly larger size of O(kn \(^{\rm 1+1/{\it k}}\)log n). We present here a deterministic Õ(kmn \(^{\rm 1/{\it k}}\)) time algorithm for constructing oracles of size O(kn \(^{\rm 1+1/{\it k}}\)). Our deterministic algorithm is slower than the randomized one by only a logarithmic factor.
Using our derandomization technique we also obtain the first deterministic linear time algorithm for constructing optimal spanners of weighted graphs. We do that by derandomizing the O(km) expected time algorithm of Baswana and Sen (ICALP’03) for constructing (2k–1)-spanners of size O(kn \(^{\rm 1+1/{\it k}}\)) of weighted undirected graphs without incurring any asymptotic loss in the running time or in the size of the spanners produced.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM Journal on Computing 28, 1167–1181 (1999)
Alon, N., Naor, M.: Derandomization, witnesses for Boolean matrix multiplication and construction of perfect hash functions. Algorithmica 16, 434–449 (1996)
Alon, N., Spencer, J.H.: The probabilistic method, 2nd edn. Wiley-Interscience, Hoboken (2000)
Awerbuch, B., Berger, B., Cowen, L., Peleg, D.: Near-linear time construction of sparse neighborhood covers. SIAM Journal on Computing 28, 263–277 (1999)
Baswana, S., Sen, S.: A simple linear time algorithm for computing (2k − 1)-spanner of O(n 1 + 1/k) size for weighted graphs. In: Proc. of 30th ICALP, pp. 384–296 (2003)
Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in O(n 2 logn) time. In: Proc. of 15th SODA, pp. 264–273 (2004)
Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t. SIAM Journal on Computing 28, 210–236 (1999)
Cohen, E., Zwick, U.: All-pairs small-stretch paths. Journal of Algorithms 38, 335–353 (2001)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 2nd edn. The MIT Press, Cambridge (2001)
Dor, D., Halperin, S., Zwick, U.: All pairs almost shortest paths. SIAM Journal on Computing 29, 1740–1759 (2000)
Elkin, M.: Computing almost shortest paths. In: Proc. of 20th PODC, pp. 53–62 (2001)
Elkin, M.L., Peleg, D.: (1 + ε,β)-Spanner constructions for general graphs. SIAM Journal on Computing 33(3), 608–631 (2004)
Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with O(1) worst case access time. Journal of the ACM 31, 538–544 (1984)
Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM 34, 596–615 (1987)
Thorup, M.: Undirected single-source shortest paths with positive integer weights in linear time. Journal of the ACM 46, 362–394 (1999)
Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the ACM 52(1), 1–24 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Roditty, L., Thorup, M., Zwick, U. (2005). Deterministic Constructions of Approximate Distance Oracles and Spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds) Automata, Languages and Programming. ICALP 2005. Lecture Notes in Computer Science, vol 3580. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11523468_22
Download citation
DOI: https://doi.org/10.1007/11523468_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27580-0
Online ISBN: 978-3-540-31691-6
eBook Packages: Computer ScienceComputer Science (R0)