Skip to main content

Simulated Annealing Beats Metropolis in Combinatorial Optimization

  • Conference paper
Automata, Languages and Programming (ICALP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3580))

Included in the following conference series:

  • 3659 Accesses

Abstract

The Metropolis algorithm is simulated annealing with a fixed temperature. Surprisingly enough, many problems cannot be solved more efficiently by simulated annealing than by the Metropolis algorithm with the best temperature. The problem of finding a natural example (artificial examples are known) where simulated annealing outperforms the Metropolis algorithm for all temperatures has been discussed by Jerrum and Sinclair (1996) as “an outstanding open problem.” This problem is solved here. The examples are instances of the well-known minimum spanning tree problem. Moreover, it is investigated which instances of the minimum spanning tree problem can be solved efficiently by simulated annealing. This is motivated by the aim to develop further methods to analyze the simulated annealing process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Droste, S., Jansen, T., Wegener, I.: Dynamic parameter control in simple evolutionary algorithms. In: Martin, W.N., Spears, W.M. (eds.) FOGA 2000. Foundations of Genetic Algorithms 6, pp. 275–294. Morgan Kaufmann, San Francisco (2001)

    Chapter  Google Scholar 

  2. Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 415–426. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Jerrum, M.: Large cliques elude the Metropolis process. Random Structures and Algorithms 3, 347–359 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Jerrum, M., Sinclair, A.: The Markov chain Monte Carlo method. An approach to approximate counting and integration. In: Hochbaum, D. (ed.) Approximation Algorithms for NP-hard Problems, ch. 12, pp. 482–522. PWS Publishing Company (1996)

    Google Scholar 

  5. Jerrum, M., Sorkin, G.B.: Simulated annealing for graph bisection. In: Proc. of 37th Symp. Foundations of Computer Science (FOCS), pp. 94–103 (1993)

    Google Scholar 

  6. Jerrum, M., Sorkin, G.B.: The Metropolis algorithm for graph bisection. Discrete Applied Mathematics 82, 155–175 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 713–724. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Sasaki, G.: The effect of the density of states on the Metropolis algorithm. Information Processing Letters 37, 159–163 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Sasaki, G., Hajek, B.: The time complexity of maximum matching by simulated annealing. Journal of the ACM 35, 387–403 (1988)

    Article  MathSciNet  Google Scholar 

  10. Sorkin, G.B.: Efficient simulated annealing on fractal energy landscapes. Algorithmica 6, 367–418 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wegener, I. (2005). Simulated Annealing Beats Metropolis in Combinatorial Optimization. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds) Automata, Languages and Programming. ICALP 2005. Lecture Notes in Computer Science, vol 3580. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11523468_48

Download citation

  • DOI: https://doi.org/10.1007/11523468_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27580-0

  • Online ISBN: 978-3-540-31691-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics