Skip to main content

Lower Bounds for Lovász-Schrijver Systems and Beyond Follow from Multiparty Communication Complexity

  • Conference paper
Automata, Languages and Programming (ICALP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3580))

Included in the following conference series:

Abstract

We prove that an ω(log3 n) lower bound for the three-party number-on-the-forehead (NOF) communication complexity of the set-disjointness function implies an n ω(1) size lower bound for tree-like Lovász-Schrijver systems that refute unsatisfiable CNFs. More generally, we prove that an n Ω(1) lower bound for the (k+1)-party NOF communication complexity of set-disjointness implies a \(2^{n^{\Omega(1)}}\) size lower bound for all tree-like proof systems whose formulas are degree k polynomial inequalities.

Paul Beame’s research was supported by NSF grants CCR-0098066 and ITR-0219468. Toniann Pitassi’s research was supported by an Ontario Premiere’s Research Excellence Award, an NSERC grant, and the Institute for Advanced Study where this research was done. Nathan Segerlind’s research was supported by NSF Postdoctoral Fellowship DMS-0303258 and done while at the Institute for Advanced Study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Bollobás, B., Lovász, L.: Proving integrality gaps without knowing the linear program. In: Proceedings 43nd Annual Symposium on Foundations of Computer Science, Vancouver, BC, November 2002, pp. 313–322. IEEE, Los Alamitos (2002)

    Google Scholar 

  2. Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity theory. In: 27th Annual Symposium on Foundations of Computer Science, Toronto, Ontario, October 1986, pp. 337–347. IEEE, Los Alamitos (1986)

    Google Scholar 

  3. Beame, P., Pitassi, T., Segerlind, N., Wigderson, A.: A direct sum theorem for corruption and the multiparty NOF communication complexity of set disjointness. In: Proceedings Twentieth Annual IEEE Conference on Computational Complexity, San Jose, CA (June 2005)

    Google Scholar 

  4. Bockmayr, A., Eisenbrand, F., Hartmann, M.E., Schulz, A.S.: On the Chvatal rank of polytopes in the 0/1 cube. Discrete Applied Mathematics 98(1-2), 21–27 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Buresh-Oppenheim, J., Galesi, N., Hoory, S., Magen, A., Pitassi, T.: Rank bounds and integrality gaps for cutting planes procedures. In: Proceedings 44th Annual Symposium on Foundations of Computer Science, Boston, MA, October 2003, pp. 318–327. IEEE, Los Alamitos (2003)

    Google Scholar 

  6. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics 4, 305–337 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chvátal, V., Cook, W., Hartmann, M.: On cutting-plane proofs in combinatorial optimization. Linear Algebra and its Applications 114/115, 455–499 (1989)

    Article  Google Scholar 

  8. Cook, W., Coullard, C.R., Turan, G.: On the complexity of cutting plane proofs. Discrete Applied Mathematics 18, 25–38 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dash, S.: On the matrix cuts of Lovász and Schrijver and their use in Integer Programming. PhD thesis, Department of Computer Science, Rice University (March 2001)

    Google Scholar 

  10. Dash, S.: An exponential lower bound on the length of some classes of branch-and-cut proofs. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 145–160. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Eisenbrand, F., Schulz, A.S.: Bounds on the Chvatal rank of polytopes in the 0/1-cube. Combinatorica 23(2), 245–261 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grigoriev, D., Hirsch, E.A., Pasechnik, D.V.: Complexity of semi-algebraic proofs. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 419–430. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Impagliazzo, R., Pitassi, T., Urquhart, A.: Upper and lower bounds on tree-like cutting planes proofs. In: 9th Annual IEEE Symposium on Logic in Computer Science, Paris, France, pp. 220–228 (1994)

    Google Scholar 

  14. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity of set intersection. In: Proceedings, Structure in Complexity Theory, Second Annual Conference, Cornell University, Ithaca, NY, June 1987, pp. 41–49. IEEE, Los Alamitos (1987)

    Google Scholar 

  15. Khachian, L.G.: A polynomial time algorithm for linear programming. Doklady Akademii Nauk SSSR, n.s. 244(5), 1093–1096 (1979); English translation in Soviet Math. Dokl. 20, 191–194 (1979)

    Google Scholar 

  16. Lovasz, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optimization 1(2), 166–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nisan, N.: The communication complexity of threshold gates. In: Mikl’os, V.S.D., Szonyi, T. (eds.) Combinatorics: Paul Erdös is Eighty, vol. I, pp. 301–315. Bolyai Society (1993)

    Google Scholar 

  19. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. Journal of Symbolic Logic 62(3), 981–998 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Raz, R., Wigderson, A.: Monotone circuits for matching require linear depth. Journal of the ACM 39(3), 736–744 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. Theoretical Computer Science, 85–93 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beame, P., Pitassi, T., Segerlind, N. (2005). Lower Bounds for Lovász-Schrijver Systems and Beyond Follow from Multiparty Communication Complexity. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds) Automata, Languages and Programming. ICALP 2005. Lecture Notes in Computer Science, vol 3580. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11523468_95

Download citation

  • DOI: https://doi.org/10.1007/11523468_95

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27580-0

  • Online ISBN: 978-3-540-31691-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics