Skip to main content

What Can Expressive Semantics Tell: Retrieval Model for a Flash-Movie Search Engine

  • Conference paper
Image and Video Retrieval (CIVR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3568))

Included in the following conference series:

Abstract

Flash, as a multimedia format, becomes more and more popular on the Web. However, previous works on Flash are unpractical to build a content-based Flash search engine. To address this problem, our paper proposes expressive semantics (ETS model) for bridging the gap between low-level features and user queries. A Flash search engine is built based on the expressive semantics of Flash movies and our experiment results confirm that expressive semantics is a promising approach to understanding and hence searching Flash movies more efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Macromedia Flash Player adoption statistics, http://www.macromedia.com/software/player_census/flashplayer

  2. Fast Search & Transfer ASA (FAST) Inc., http://www.AlltheWeb.com

  3. Google Inc., http://www.google.com

  4. Kleinberg, J.: Authoritative Sources in a Hyperlinked Environment. In: Proc. 9th ACMSIAM Symposium on Discrete Algorithms, pp. 668–677 (1998)

    Google Scholar 

  5. Smeulders, A., et al.: Content-based image retrieval at then end of the early years. IEEE Trans. Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  6. Truong, B.T., Venkatesh, S., Dorai, C.: Automatic Genre Identification for Content-Based Video Categorization. In: Int’l Conf. on Pattern Recognition (ICPR 2000), pp. 4230–4233 (September 2000)

    Google Scholar 

  7. Corridoni, J.M., Del Bimbo, A., Pala, P.: Retrieval of Paintings Using Effects Induced by Color Features. In: IEEE Work. on Content Based Access of Image and Video Databases, Bombay, India (January 1998)

    Google Scholar 

  8. Ding, D., Li, Q., Feng, B., Wenyin, L.: A Semantic Model for Flash Retrieval Using Co-occurrence Analysis. In: Proc. ACM Multimedia 2003, Berkeley, CA (November 2003)

    Google Scholar 

  9. Yang, J., Li, Q., Wenyin, L., Zhuang, Y.: Search for Flash Movies on the Web. In: Proc. 3rd International Conference on Web Information Systems Engineering, WISEw 2002 (December 2002)

    Google Scholar 

  10. SMIL, http://www.w3.org/AudioVideo/

  11. MPEG-7, http://www.mp7c.org/

  12. Graves, A., Lalmas, M.: Multimedia: Video Retrieval Using an MPEG-7 Based Inference Network. In: Proc. 25th ACM SIGIR conference on Research and development in information retrieval (2002)

    Google Scholar 

  13. Chang, Y.C., Lo, M.L., Smith, J.R.: Issues and solutions for storage, retrieval, and search of MPEG-7 documents. In: Proceedings of IS&T/SPIE 2000 Conference on Internet Multimedia Management Systems, Boston, MA, November 6-8, vol. 4210 (2000)

    Google Scholar 

  14. Dimitrova, N., Zhang, H.-J., Shahraray, B., Sezan, M.I., Huang, T., Zakhor, A.: Applications of Video-Content Analysis and Retrieval. IEEE Multimedia 9(3), 42–55 (2002)

    Article  Google Scholar 

  15. Brown, M.G., et al.: Automatic Content-Based Retrieval of Broadcast News. In: Proc. 3rd Int’l Conf. Multimedia (ACM Multimedia 1995), pp. 35–43. ACM Press, New York (1995)

    Chapter  Google Scholar 

  16. Colombo, C., Del Bimbo, A., Pala, P.: Semantics in visual information retrieval. IEEE Multimedia 6(3), 38–53 (1999)

    Article  Google Scholar 

  17. C. Dorai and S. Venkatesh. Computational Media Aesthetics: Finding meaning beautiful. IEEE Multimedia, 8(4): 10–12, October-December 2001.

    Google Scholar 

  18. Arijon, D.: Grammar of the film language. Silman-James Press (1976)

    Google Scholar 

  19. Lee, T., Sheng, L., Bozkaya, T., Ozsoyoglu, G., Ozsoyoglu, M.: Querying multimedia presentations based on content. IEEE Trans. Knowledge and Data Engineering 11(3), 361–387 (1999)

    Article  Google Scholar 

  20. Adali, S., Sapino, M.L., Subrahmanian, V.S.: An Algebra for Creating and Querying Multimedia Presentations. ACM Multimedia Systems 8(3), 212–230 (2000)

    Article  Google Scholar 

  21. Picard, R.W.: Affective Computing. The MIT Press, Cambridge (1997)

    Google Scholar 

  22. Wexner, L.B.: The degree to which colors (hues) are associated with mood-tones. Journal of Applied Psychology 38, 432–435 (1954)

    Article  Google Scholar 

  23. Open Directory Project, http://www.dmoz.org/

  24. Itten, J.: Art of Color (Kunst der Farbe). Otto Maier Verlag, Ravensburg, Germany (1961)

    Google Scholar 

  25. Miller, G.A.: WordNet: A Lexical Database for English. Comm. of the ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  26. Adams, B., Dorai, C., Venkatesh, S.: Automated Film Rhythm Extraction for Scene Analysis. In: IEEE International Conference on Multimedia & Expo 2001, Tokyo, Japan (2001)

    Google Scholar 

  27. Adams, B., Dorai, C., Venkatesh, S.: Study of shot length and motion as contributing factors to movie tempo. In: Proc. ACM Multimedia 2000, Los Angeles, California, pp. 353–355 (November 2000)

    Google Scholar 

  28. Adams, B., Dorai, C., Venkatesh, S.: Towards automatic extraction of expressive elements from motion pictures: Tempo. In: IEEE International Conference on Multimedia and Expo, New York City, USA, vol. II, pp. 641–645 (July 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ding, D., Yang, J., Li, Q., Liu, W., Wang, L. (2005). What Can Expressive Semantics Tell: Retrieval Model for a Flash-Movie Search Engine. In: Leow, WK., Lew, M.S., Chua, TS., Ma, WY., Chaisorn, L., Bakker, E.M. (eds) Image and Video Retrieval. CIVR 2005. Lecture Notes in Computer Science, vol 3568. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11526346_16

Download citation

  • DOI: https://doi.org/10.1007/11526346_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27858-0

  • Online ISBN: 978-3-540-31678-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics