Skip to main content

Semantic Annotation of Image Groups with Self-organizing Maps

  • Conference paper
Image and Video Retrieval (CIVR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3568))

Included in the following conference series:

Abstract

Automatic image annotation has attracted a lot of attention recently as a method for facilitating semantic indexing and text-based retrieval of visual content. In this paper, we propose the use of multiple Self-Organizing Maps in modeling various semantic concepts and annotating new input images automatically. The effect of the semantic gap is compensated by annotating multiple images concurrently, thus enabling more accurate estimation of the semantic concepts’ distributions. The presented method is applied to annotating images from a freely-available database consisting of images of different semantic categories.

This work was supported by the Academy of Finland in the projects Neural methods in information retrieval based on automatic content analysis and relevance feedback and New information processing principles, the latter being part of the Finnish Centre of Excellence Programme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gevers, T., Aldershoff, F., Geusebroek, J.M.: Integrating visual and textual cues for image classification. In: Laurini, R. (ed.) VISUAL 2000. LNCS, vol. 1929, pp. 419–429. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Szummer, M., Picard, R.W.: Indoor-outdoor image classification. In: Proc. IEEE International Workshop on Content-Based Access of Image and Video Database, Bombay, India, pp. 42–51 (1998)

    Google Scholar 

  3. Vailaya, A., Jain, A., Zhang, H.J.: On image classification: City images vs. landscapes. Pattern Recognition 31, 1921–1935 (1998)

    Article  Google Scholar 

  4. Chang, E., Goh, K., Sychay, G., Wu, G.: CBSA: Content-based soft annotation for multimodal image retrieval using bayes point machines. IEEE Transactions on Circuits and Systems for Video Technology 13, 26–38 (2003)

    Article  Google Scholar 

  5. Barnard, K., Duygulu, P., de Freitas, N., Forsyth, D., Blei, D., Jordan, M.I.: Matching words and pictures. Journal of Machine Learning Research 3, 1107–1135 (2003)

    Article  MATH  Google Scholar 

  6. Li, J., Wang, J.Z.: Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans. on Patt. Anal. and Machine Intell. 25, 1075–1088 (2003)

    Article  Google Scholar 

  7. Jeon, J., Lavrenko, V., Manmatha, R.: Automatic image annotation and retrieval using cross-media relevance models. In: Proc. 26th ACM SIGIR Conf. on Research and Development in Information Retrieval, Toronto, Canada, pp. 119–126 (2003)

    Google Scholar 

  8. Blei, D.M., Jordan, M.I.: Modeling annotated data. In: Proc. 26th ACM SIGIR Conf. on Res. and Devel, in Information Retrieval, Toronto, Canada, pp. 127–134 (2003)

    Google Scholar 

  9. Lu, Y., Hu, C., Zhu, X., Zhang, H., Yang, Q.: A unified framework for semantics and feature based relevance feedback in image retrieval systems. In: Proc. 8th ACM Int’l Conf. on Multimedia, Los Angeles, CA, USA, pp. 31–37 (2000)

    Google Scholar 

  10. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  11. Laaksonen, J., Koskela, M., Oja, E.: PicSOM—Self-organizing image retrieval with MPEG-7 content descriptions. IEEE Trans. on Neural Networks 13, 841–853 (2002)

    Article  Google Scholar 

  12. Koskela, M., Laaksonen, J., Oja, E.: Use of image subset features in image retrieval with self-organizing maps. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 508–516. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Laaksonen, J., Koskela, M., Oja, E.: Class distributions on SOM surfaces for feature extraction and object retrieval. Neural Networks 17, 1121–1133 (2004)

    Article  Google Scholar 

  14. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. In: Proc. Workshop on Generative-Model Based Vision, Wash., DC (2004)

    Google Scholar 

  15. ISO/IEC: (Information technology - Multimedia content description interface - Part 3: Visual) 15938-3:2002(E)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koskela, M., Laaksonen, J. (2005). Semantic Annotation of Image Groups with Self-organizing Maps . In: Leow, WK., Lew, M.S., Chua, TS., Ma, WY., Chaisorn, L., Bakker, E.M. (eds) Image and Video Retrieval. CIVR 2005. Lecture Notes in Computer Science, vol 3568. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11526346_55

Download citation

  • DOI: https://doi.org/10.1007/11526346_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27858-0

  • Online ISBN: 978-3-540-31678-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics