
Automatic Veri�cation and Conformance Testing
for Validating Safety Properties of Reactive

Systems?

Vlad Rusu, Hervé Marchand, and Thierry Jéron

IRISA/INRIA, Campus de Beaulieu, Rennes, France
First.Last@irisa.fr

Abstract. This paper presents a combination of veri�cation and confor-
mance testing techniques for the formal validation of reactive systems. A
formal speci�cation of a system, which may be in�nite-state, and a set of
safety properties are assumed. Each property is veri�ed on the speci�ca-
tion using automatic techniques based on abstract interpretation, which
are sound, but, as a price to pay for automation, are not necessarily
complete. Next, for each property, a test case is automatically generated
from the speci�cation and the property, and is executed on a black-box
implementation of the system to detect violations of the property by
the implementation and non-conformances between implementation and
speci�cation. If the veri�cation step did not conclude, the test execution
may also detect violations of the property by the speci�cation.

Keywords: veri�cation, conformance testing, symbolic test generation

1 Introduction
Formal veri�cation and conformance testing are two well-established approaches
for validating reactive systems. Both approaches consist in checking the consis-
tency between two representations of a system:
� formal veri�cation typically compares a formal speci�cation of the system

with respect to some higher-level required properties;
� conformance testing [1, 5] compares the observable behaviour of a black-box

implementation of the system with that described by the speci�cation.
A formal validation chain for reactive systems, combining veri�cation and con-
formance testing, may naturally consist of the following steps:

1. the properties are automatically veri�ed on the speci�cation;
2. test cases are automatically derived from the speci�cation and the properties;
3. the test cases are executed on the black-box implementation of the system,

to check the satisfaction of the properties by the implementation and the
conformance between implementation and speci�cation.

? The full version of this paper is available as IRISA report [17].

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 189�204, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

190 V. Rusu, H. Marchand, and T. Jéron

In this paper we formally de�ne and study such a validation chain. We con-
sider a general class of speci�cations which may be in�nite-state (automata ex-
tended with variables, which communicate with the environment by means of
inputs and outputs carrying parameters). In this setting, the veri�cation step (in
particular, for safety properties) is undecidable. In order to keep it automatic
and ensure that it always terminates, we adopt approximate, conservative veri-
�cation techniques based on abstract interpretation [7], which may either prove
the property, or terminate with a �don't know� answer.

The main contribution of the paper lies in the second step of the proposed
validation chain. It is a test generation algorithm that takes into account the
in�nite-state nature of the speci�cations and the incompleteness of the veri�ca-
tion step. The algorithm takes as inputs a speci�cation and a safety property,
and produces a test case for checking the conformance between a given imple-
mentation and the speci�cation, and the satisfaction of the safety property by
the implementation. To deal with in�nite-state speci�cations and properties, the
algorithm is symbolic: it does not attempt to enumerate the (potentially in�nite)
domain of the speci�cation's variables, but deals with the variables by means of
symbolic computations. As a consequence of the incompleteness of the veri�ca-
tion step, the test cases generated by our algorithm may also detect violations of
the property by the speci�cation when executed on the implementation. Hence,
test execution may detect one or several of the following inconsistencies:

� violation of the property by the speci�cation,
� violation of the property by the implementation,
� violation of conformance between implementation and speci�cation.

These results are returned to the user in the form of test verdicts, and may
be employed to �x errors in the implementation, speci�cation, or the properties.

The rest of the paper is organised as follows. Section 2 presents the model
of Input-Output Symbolic Transition Systems (IOSTS) and, in Section 3 we set
the framework for veri�cation and testing using IOSTS as the underlying model.

Section 4 de�nes our symbolic test generation algorithm. The algorithm is
proved correct, in the sense that the verdicts returned by test execution correctly
characterise the relations between implementation, speci�cation, and property.
Moreover, the (in�nite) set of all test cases generated in this manner may, in
principle, discover all implementations that do not conform to a given speci-
�cation according to the standard ioco relation [19]. As a by-product of the
correctness proofs, we show that ioco-conformance with respect to a given spec-
i�cation is a safety property. We also provide a symbolic construction of the
canonical tester [4] for ioco-conformance with respect to a given speci�cation.

Section 5 outlines a technique for optimising test cases towards detecting the
violation of the property. We show that this optimisation preserves the correct-
ness of the test verdicts. The overall approach is illustrated on a simple example.
The full version of this paper [17] contains a larger example (the Bounded Re-
transmission Protocol [11]) and provides proofs of the results.

Automatic Veri�cation and Conformance Testing 191

2 The IOSTS Model
The model of Input-Output Symbolic Transition Systems (IOSTS) is inspired
from I/O automata [15]. Unlike I/O automata, IOSTS do not require input-
completeness (i.e., all input actions do not need to be enabled all the time).

De�nition 1 (IOSTS). An IOSTS is a tuple 〈D, Θ,Q, q0, Σ, T 〉 where
� D is a �nite set of typed Data, partitioned into a set V of variables and a

set P of parameters. For d ∈ D, type(d) denotes the type of d.
� Θ is the initial condition, a Boolean expression on V ,
� Q is a nonempty, �nite set of locations and q0 ∈ Q is the initial location.
� Σ is a nonempty, �nite alphabet, which is the disjoint union of a set Σ? of

input actions and a set Σ! of output actions1. For each action a ∈ Σ, its
signature sig(a) = 〈p1, . . . , pk〉 ∈ P k (k ∈ N) is a tuple of parameters.

� T is a set of transitions. Each transition is a tuple 〈q, a, G,A, q′〉 made of:
• a location q ∈ Q, called the origin of the transition.
• an action a ∈ Σ called the action of the transition.
• a Boolean expression G on V ∪ sig(a), called the guard.
• an assignment A, which is a set of expressions of the form (x := Ax)x∈V

such that, for each x ∈ V , the right-hand side Ax of the assignment
x := Ax is an expression on V ∪ sig(a).

• a location q′ ∈ Q called the destination of the transition.

A simple example of IOSTS is depicted in Figure 1. This system expects a
START input carrying an integer parameter p, and saves the value of p into
the variable x. Then, as long as x is strictly positive, its value is emitted to the
environment via the output MSG carrying the parameter m. The variable x is
decreased by 1, and when it reaches 0, the STOP output is emitted.

x := p
START?(p)

STOP !
x = 0

m = x ∧ x > 0
MSG!(m)
x := x− 1

Fig. 1. Sample IOSTS S

Semantics. The semantics of IOSTS is described in terms of input-output la-
belled transitions systems (IOLTS).

1 For simplicity, only input and output actions are considered here. A more detailed
model, which also contains internal actions, is de�ned in the full paper.

192 V. Rusu, H. Marchand, and T. Jéron

De�nition 2. An IOLTS is a tuple 〈S, S0, Λ,→〉 where S is a set of states,
which may be in�nite, S0 ⊆ S is the set of initial states, Λ = Λ? ∪Λ! is a set of
(input or output) actions, and →⊆ S × Λ× S is the transition relation.

Intuitively, the IOLTS semantics of an IOSTS 〈D = V ∪ P,Θ, Q, q0, Σ, T 〉
enumerates of the possible tuples of values (hereafter called valuations) of pa-
rameters P and variables V . Let V denote the set of valuations of the variablesV ,
and Π denote the set of valuations of the parameters P . Then, for an expres-
sion E involving (a subset of) V ∪P , and for ν ∈ V, π ∈ Π, we denote by E(ν, π)
the value obtained by substituting inE each variable by its value according toν,
and each parameter by its value according toπ. For P ′ ⊆ P , we denote by ΠP ′

the restriction of the set Π of valuations to the set P ′ of parameters.

De�nition 3. The semantics of an IOSTS S = 〈D, Θ,Q, q0, Σ, T 〉 is an IOLTS
[[S]] = 〈S, S0, Λ,→〉, de�ned as follows:

� the set of states is S = Q× V,
� the set of initial states is S0 = q0 × V0, with V0 = {ν ∈ V| Θ(ν) = true}
� the set of actions Λ = {〈a, π〉|a ∈ Σ, π ∈ Πsig(a)}, also called the set of

valued actions, is partitioned into the sets Λ? of valued inputs and Λ! of
valued outputs, such that for # ∈ {?, !}, Λ# = {〈a, π〉|a ∈ Σ#, π ∈ Πsig(a)}.

� → is the smallest relation in S × Λ× S de�ned by the following rule:

〈q, ν〉, 〈q′, ν′〉 ∈ S 〈a, π〉 ∈ Λ t = 〈q, a, G, A, q′〉 ∈ T G(ν, π) = true ν′ = A(ν, π)

〈q, ν〉 〈a,π〉→ 〈q′, ν′〉

The rule says that the valued action〈a, π〉 takes the system from a state 〈q, ν〉
to a state 〈q′, ν′〉 if there exists a transition t = 〈q, a, G, A, q′〉 whose guard G
evaluates to true when the variables evaluate according toν and the parameters
carried by the action a evaluate according to π. Then, the assignment A of the
transition maps the pair (ν, π) to ν′.

De�nition 4 (run). A run fragment is a sequence of alternating states and
valued actions s1

α1→ s2
α2→ · · · sn−1

αn−1→ sn. A run is a run fragment that
starts in an initial state.

A state is reachable if it is the last state of a run. For a sequence σ =
α1α2 · · ·αn of valued actions, we sometimes write s

σ→ s′ for ∃s1, . . . sn+1 ∈
S. s = s1

α1→ s2
α2→ · · · sn

αn→ sn+1 = s′. For a set of states S′ ⊆ S of the IOSTS
we write s

σ→ S′ if there exists a state s′ ∈ S′ such that s
σ→ s′.

De�nition 5 (trace). The trace of a run ρ is the projection of ρ on Λ! ∪ Λ?.
The set of traces of an IOSTS S is denoted by Traces(S).

Automatic Veri�cation and Conformance Testing 193

Let F ⊆ Q be a set of locations of an IOSTSS. A run ρ is recognised by F if it
ends in a state inF×V. A trace is recognised by F if it is the projection onΛ!∪Λ?

of a recognised run. The set of recognised traces is denoted byRTraces(S, F).
An IOSTS is deterministic if in each location, the guards of the transitions

labelled by the same action are mutually exclusive. All the IOSTS considered
in this paper are deterministic. In the full version [17], more general IOSTS
are also considered (nondeterministic IOSTS with internal actions). A symbolic
determinisation operation, which consists in transforming a nondeterministic
IOSTS into a deterministic one having the same set of traces, is also presented.
The operation is proved correct and terminates for a subclass of IOSTS [20].

3 Veri�cation and Conformance Testing with IOSTS
This section sets the framework for veri�cation and conformance testing with
IOSTS. First, we present a few operations on IOSTS, and then the satisfaction
relation and the conformance relation between IOSTS are formally de�ned.

3.1 Parallel Product
The parallel product of two IOSTS is an IOSTS whose set of traces (resp. recog-
nised traces) are the intersection of the set of traces (resp. recognised traces) of
the operands. This operation imposes that the IOSTS have no shared variables,
but are de�ned on the same alphabets of actions and same parameters.

De�nition 6 (Compatible IOSTS).For j = 1, 2, the two IOSTS Sj = 〈Dj =
Vj ∪ Pj , Θj , Qj , q

0
j , Σj , T j〉 with data Dj and alphabet Σj = Σ?

j ∪ Σ!
j are com-

patible if V1 ∩ V2 = ∅, P1 = P2, Σ!
1 = Σ!

2, Σ?
1 = Σ?

2 .

De�nition 7 (Parallel Product). The parallel product S = S1||S2 of two
compatible IOSTS S1,S2 is the IOSTS 〈D, P,Θ, Q, q0, Σ, T 〉 that consists of
the following elements: V = V1 ∪ V2, P = P1 = P2, Θ = Θ1 ∧Θ2, Q = Q1 ×Q2,
q0 = 〈q0

1 , q0
2〉, Σ? = Σ?

1 = Σ?
2 , Σ! = Σ!

1 = Σ!
2 The set T of transitions of the

composed system is the smallest set de�ned by the rule:

〈q1, a,G1, A1, q
′
1〉 ∈ T1 〈q2, a, G2, A2, q

′
2〉 ∈ T2

〈〈q1, q2〉, a, G1 ∧G2, A1 ∪A2, 〈q′1, q′2〉〉 ∈ T

Lemma 1 (traces of the parallel product).
Traces(S1||S2) = Traces(S1) ∩ Traces(S2).
RTraces(S1||S2, F1 × F2) = RTraces(S1, F1) ∩ RTraces(S2, F2).

3.2 Quiescence and Suspension IOSTS
In conformance testing it is assumed that the environment may observe not
only outputs, but also absence of outputs (i.e., in a given state, the system does

194 V. Rusu, H. Marchand, and T. Jéron

not emit any output for the environment to observe). This is calledquiescence in
conformance testing [19]. On a black-box implementation, quiescence is observed
using timers: a timer is reset whenever the environment sends a stimulus to the
implementation; when the timer expires, the environment observes quiescence.

In order to distinguish a quiescence that is also present in a speci�cation
from one that is not, quiescence can be made explicit on a speci�cation by a
symbolic operation called suspension. This operation transforms an IOSTS S
into an IOSTS Sδ, also called the suspension IOSTS of S. Each location q of Sδ

contains a new self-looping transition, labelled with a new output actionδ, which
may be �red if and only if no other output action may be �red inq. Formally,
De�nition 8 (Suspension). Given S = 〈D = V ∪P, Θ,Q, q0, Σ = Σ!∪Σ?, T 〉
an IOSTS, the suspension IOSTS Sδ is the tuple 〈D = V ∪ P, Θ,Q, q0, (Σ! ∪
{δ}) ∪Σ?, T ∪⋃

q∈Q〈q, δ,Gδ,q, (v := v)v∈V , q〉〉 where

Gδ,q :
∧

a∈Σ!

¬Ga,q where Ga,q :
∨

t=〈q,a,G,A,q′〉∈T
∃sig(a).G. (1)

For the IOSTS S depicted in Figure 1, the IOSTSSδ is depicted in Figure 2. The
guard x < 0 of the transition labeled δ is obtained by simplifying the expression
¬(x = 0 ∨ ∃m,m = x ∧ x > 0), which corresponds to Formula (1) above.

In this system, a START input with a negative parameter (p < 0) does not
allow forMSG or STOP outputs, i.e., the system is quiescent afterSTART. This
is made explicit by the special output δ! after START.

x := p
START?(p)

STOP !
x = 0

m = x ∧ x > 0
MSG!(m)
x := x− 1

δ! δ!

δ!
x < 0

Fig. 2. Suspension IOSTS Sδ

3.3 Veri�cation of Safety Properties
The problem considered here is: given a reactive system modelled by an IOSTSS,
and a safety property ψ de�ned on its traces, does S satisfy ψ? We model safety
properties using observers, which are deterministic IOSTS equipped with a set
of �bad� locations; the property is violated when a �bad� location is reached.
De�nition 9 (Observer). An observer is a deterministic IOSTS ω together
with a set of dedicated locationsViolateω ⊆ Qω, which are deadlocks (no outgo-
ing transitions). An observer (ω,Violateω) is compatible with an IOSTS M if ω
is compatible withM . The set of observers compatible withM is denoted Ω(M).

Automatic Veri�cation and Conformance Testing 195

An observer ω ∈ Ω(M) de�nes a safety property on (Λ!
M ∪ Λ?

M)∗, namely, the
property that is satis�ed by all sequences in (Λ!

M ∪Λ?
M)∗ \RTraces(ω, V iolateω)

(and those sequences only). In particular, ifM is the suspension IOSTS Sδ of a
given IOSTS S, then the property is satis�ed by a subset of (Λ!

S ∪ {δ} ∪ Λ?
S)∗.

MSG?(m)

p ≥ 0

START?(p)

STOP ! Violate

∗ ∗MSG?(m)

p > 0

START?(p)

STOP ! Violate

∗ ∗

Fig. 3. Sample observers : ω1 (left), ω2 (right)

For example the observer ω1 depicted in Figure 3 describes the safety prop-
erty which says that between START input carrying a parameter p > 0, and
a STOP output, the system must exhibit at least one MSG output. The set
of �bad� locations is {Violate}. The self-loops �*� denote all actions (including
the quiescence δ) that do not label other outgoing transitions. The observerω2

depicted on the right-hand side of Figure 3 describes almost the same property
(except for the fact that START input carries a parameter p ≥ 0). An IOSTS
satis�es an observer if no trace of the IOSTS is recognised by the observer:

De�nition 10 (IOSTS Satis�es Observer). For an IOSTS S and an ob-
server (ω,Violateω) ∈ Ω(S), we say that S satis�es (ω,Violateω), denoted by
S |= (ω,Violateω), if Traces(S) ∩ RTraces(ω,Violateω) = ∅.
Let Q denote the set of locations of S. Then, Traces(S) = RTraces(S, Q) and
RTraces(S‖ω,Q×Violateω) = RTraces(S, Q)∩RTraces(ω,Violateω) (cf. Lemma 1).
Hence, checking S |= (ω,Violateω) amounts to checking the emptyness of the set
RTraces(S‖ω,Q × Violateω). This can be done checking that the intersection
between the set of reachable states of S‖ω, and the set of states whose locations
lie in Q × Violateω, is empty. Alternatively, the intersection between the set of
states from which Q × Violateω is reachable (also called the coreachable set of
Q×Violateω), and the set of initial states, can be checked for emptyness.

However, reachable and coreachable sets are not computable in general be-
cause of undecidability problems. Approximate analysis techniques such as ab-
stract interpretation [7], can be used to compute over-approximations of them.

Our tool STG (Symbolic Test Generation) [6] is interfaced with a tool called
NBac [13] for this purpose. First, STG automatically computes the productω||S,
and then, NBac automatically performs an approximate reachability analysis
(from the initial states) and approximate coreachability analysis (to the violating
locations) of the product. These tools can be employed to prove, e.g., that the
IOSTS Sδ depicted in Figure 2 does satisfy the observerω1 depicted in Figure 3.
(The violating locations are found unreachable, hence, the property holds).

196 V. Rusu, H. Marchand, and T. Jéron

On the other hand, it is impossible in general to prove automatically that
an IOSTS does not satisfy an observer. Such a situation occurs with the IOSTS
Sδ in Figure 2 and the observer ω2 depicted in the right-hand side of Figure 3:
Sδ does not satisfy ω2, because a START input carrying the parameter p = 0
allows for a STOP output to be emitted (without anyMSG inputs in between),
which violates the property of interest (theViolate location is reached).

Combining observers. The parallel product of two observers (ω,Violateω) and
(ϕ,Violateϕ) can be also interpreted in terms of safety properties. We use these
properties in Section 4. A natural choice is to equip the product ω||ϕ with
the set of locations Violateω × Violateϕ; by Lemma 1, RTraces(ω||ϕ,Violateω ×
Violateϕ) = RTraces(ω,Violateω) ∩ RTraces(ϕ,Violateϕ); hence, we obtain a
safety property which is violated whenever both safety properties described by
(ω,Violateω) and (ϕ,Violateϕ) are violated. Alternative choices for the violating
locations are, e.g., Violateω × (Qϕ \ Violateϕ), which indicates the violation of
the former property, but not that of the latter; and, (Qω \Violateω)×Violateϕ,
which indicates the violation of the latter, but not of the former property.

3.4 Conformance Testing
A conformance relation formalises the set of implementations that behave con-
sistently with a speci�cation. An implementationI is not a formal object (it is
a physical system) but, in order to reason about conformance, it is necessary to
assume that the semantics of I can be modelled by a formal object. We assume
here that it is modelled by an IOLTS (cf. De�nition 2). The notions of trace
and quiescence are de�ned for IOLTS just as for IOSTS. The implementation is
assumed to be input-complete, i.e., all its inputs are enabled in all states.

These assumptions are called test hypothesis in conformance testing. The cen-
tral notion in conformance testing is that of conformance relation; the standard
ioco relation de�ned by Tretmans [19] can be rephrased as

De�nition 11 (ioco). An inplementation I ioco-conforms to a speci�cation
S, denoted by I ioco S, if Traces(Sδ) · (Λ! ∪ {δ}) ∩ Traces(Iδ) ⊆ Traces(Sδ).

Intuitively, an implementation I ioco-conforms to its speci�cation S, if, after
each trace of the suspension IOSTS Sδ, the implementation only exhibits out-
puts and quiescences allowed by Sδ. Hence, in this framework, the speci�cation
is partial with respect to inputs, i.e., after an input that is not described by
the speci�cation, the implementation may have any behaviour, without violat-
ing conformance to the speci�cation. This corresponds to the intuition that a
speci�cation models a given set of services that must be provided by a system;
a particular implementation of the system may implement more services than
speci�ed, but these additional features should not in�uence its conformance.

Example. An implementation that exhibits the traceSTART?(1) ·STOP ! does
not conform to the speci�cationS depicted in Figure 1 - this trace is not present
in the IOSTS Sδ (Figure 2). For the same reason, the trace START?(1) · δ!

Automatic Veri�cation and Conformance Testing 197

reveals a non-conformance toS. On the other hand, a trace such asSTART?(1)·
START?(1) · STOP ! does not pose problems for conformance, as Sδ does not
constrain the traces of the system after the secondSTART? in any way.

4 Test Generation for Safety and Conformance
This section shows how to generate a test case from a speci�cation using a
safety property as a guide. The test case attempts to detect violations of the
property by an implementation of the system and violations of the conformance
between the implementation and the speci�cation. Moreover, if the veri�cation
step (Section 3.3) could not establish the fact that the speci�cation satis�es the
property, the generated test cases may also detect violations of the property by
the speci�cation when executed on the implementation.

We show that the test cases generated by our method always return correct
verdicts. In this sense, the test generation method itself is correct.

Outline. We �rst de�ne the output-completion Σ!(M) of an IOSTS M . We then
show that the output-completion of the IOSTS of Sδ is a canonical tester [4]
for S and the ioco relation de�ned in Section 3.4 (a canonical tester for a spec-
i�cation with respect to a given relation allows, in principle, to detect every
implementation that disagrees with the speci�cation according to the relation).
This derives from the fact, stated in Lemma 2 below, that ioco-conformance to
a speci�cation S is equivalent to satisfying (a safety property described by) an
observer obtained from Σ!(Sδ). By composing this observer with another ob-
server (ω,Violateω) we obtain test cases for checking the conformance toS and
the satisfaction of (ω,Violateω).

De�nition 12 (output-completion).Given M = 〈D, Θ,Q, q0, Σ, T 〉 a deter-
ministic IOSTS, the output completion of M is the IOSTS Σ!(M) = 〈D, Θ,Q∪
{FailM}, q0, Σ, T ∪⋃

q∈Q,a∈Σ!〈q, a,
∧

t=〈q,a,Gt,At,q′t〉∈T ¬Gt, (x := x)x∈V ,FailM 〉〉.

Interpretation: Σ!(M) is obtained from M by adding a new location FailM /∈
Q, and for each q ∈ Q and a ∈ Σ!, a transition with origin q, destination
FailM , action a, identity assignments and guard

∧
t=〈q,a,Gt,At,q′t〉∈T ¬Gt. Hence,

any output not �reable in M becomes �reable in Σ!(M) and leads to the new
(deadlock) locationFailM . The output-completion of an IOSTSM can be seen as
an observer, by choosing {FailM} as the set of violating locations. The following
lemma says that conformance to a speci�cationS is a safety property, namely,
the property whose negation is represented by the observer(Σ!(Sδ), {FailSδ}).

Lemma 2. I ioco S i� Iδ |= (Σ!(Sδ), {FailSδ})).

The lemma also says that the IOSTS Σ!(Sδ) is a canonical tester for ioco-
conformance to S. Indeed, Iδ |= (Σ!(Sδ), {FailSδ)} can be interpreted as the
fact that execution of Σ!(Sδ) on the implementation I never leads to a �Fail�

198 V. Rusu, H. Marchand, and T. Jéron

verdict; the fact that this is equivalent to I ioco S (as stated by Lemma 2)
amounts to having a canonical tester [4].

A canonical tester is, in principle, enough for detecting all implementations
that do not conform to a given speci�cation. However, our goal in this paper is to
detect, in addition to such non-conformances, other potential violations of other
(additional) safety properties coming from, e.g., the system's requirements.

The observers (cf. De�nition 9) employed for expressing such properties also
serve as a test selection mechanism; by Lemma 1, the product between an ob-
server and the canonical tester can be used to de�ne a subset of traces of interest
among the many possible traces of the canonical tester.

We �rst note that for an IOSTS M and an observer (ω,Violateω) ∈ Ω(M),
the IOSTS ω||Σ!(M) can be interpreted as an observer ofM by choosing its set
of violating locations. Let for now this set be Violateω × {FailM}, denoted by
ViolateFailω||Σ!(M).The subscript is omitted whenever it is clear from the context.

De�nition 13. For (ω,Violateω) ∈ Ω(Sδ), test(S, ω) , ω||Σ!(Sδ).

In the rest of the section we show that every test(S, ω) can be seen as a test case
that re�nes the canonical tester, as violations of (ω,Violateω) are also checked.

Proposition 1. I ioco S i�
∀(ω,Violateω) ∈ Ω(Sδ). Iδ |= (test(S, ω),ViolateFailtest(S,ω)).

Interpretation. The IOSTS test(S, ω) can be seen as a test case to be executed
in parallel with an implementation I. Proposition 1 says that if this execution
enters a location inViolateFailtest(S,ω) (=Violateω×{FailSδ}), then the implemen-
tation violates both the property de�ned by (ω,Violateω) and the conformance
to speci�cation S. In this situation, theViolateFail verdict is given:

ViolateFail: the implementation violates the property and the conformance

The proposition also says that the (infnite) set {test(S, ω)|(ω,Violateω) ∈ Ω(Sδ)}
of test cases is �exhaustive� for checking ioco-conformance to a given speci�ca-
tion S, meaning that all non-conformances may, in principle, be detected.

We now consider another interpretation of the IOSTSω||Σ!(M), which leads
to another test verdict. Choosing the violating locations to be(Qω \Violateω)×
{FailM} results in a di�erent observer. We denote byFailω||Σ!(M) the set (Qω \
Violateω)× {FailM}. The subscript is omitted whenever the context is clear.

Proposition 2. For an IOSTS S and (ω,Violateω) ∈ Ω(Sδ),
Iδ 6|= (test(S, ω),Failtest(S,ω)) ⇒ ¬(I ioco S)

Proposition 2 says that when test(S, ω) enters a location in the set Failtest(S,ω)
(= (Qω \Violateω)× {FailSδ}) when executed on an implementation I, then I
violates conformance to S. The property ω is not violated (the Violateω set is
not entered). In this case, the Fail verdict is given:

Automatic Veri�cation and Conformance Testing 199

Fail: the implementation violates the conformance, but not the property

A third interpretation of the IOSTS ω||Σ!(M) as an observer can be given, by
choosing the set of violating locations to beViolateω ×QM . We denote this set
by Violateω||Σ!(M), and omit the subscript whenever it is clear from the context.
Proposition 3. For an IOSTS S and observer (ω,Violateω) ∈ Ω(Sδ), Iδ 6|=
(test(S, ω),Violatetest(S,ω)) ⇒ Iδ 6|= (ω,Violateω) ∧ Sδ 6|= (ω,Violateω).
Proposition 3 says that when test(S, ω) enters a location in Violatetest(S,ω) when
executed on an implementationI, then a violation of the property by both spec-
i�cation and implementation is detected. Hence, theViolate verdict is given:

Violate: the speci�cation and the implementation violate the property

Discussion. Propositions 1, 2, and 3 show that the test generation algorithm,
i.e., the construction of the IOSTS test(S, ω) and of its three verdicts, arecorrect,
in the sense that verdicts correctly describe the relations between speci�cation,
implementation, and property. The verdictViolateFail (resp. Fail) detects the
violation of the property and of the conformance (resp. of the conformance only)
by the implementation. This holds independently of whether the speci�cation
satis�es the property or not; indeed, the execution of the test case on the im-
plementation may detect violations of the property by the speci�cation using
the Violate verdict. The ability to generate test cases from a property and a
speci�cation which may or may not satisfy the property is important, because
veri�cation is undecidable for the in�nite-state systems considered in this paper.

A natural question that arises is why a violation of the property by the
implementation is always detected simultaneously with either (1) a violation of
the property by the speci�cation or (2) a violation of the conformance between
implementation and speci�cation. The reason is that our test cases are extracted
from the speci�cation, i.e., they only contain traces of the speci�cation. An
implementation may only violate a property without (1) or (2) occurring when
it executes a trace that diverges at some point from the speci�cation by aninput;
indeed, as seen in Section 3.4, this does not compromise conformance and, of
course, the speci�cation cannot violate the property on a trace that it does not
contain. Such traces are excluded from the generated test cases by construction.

Alternatively, these traces could be included in the test cases, but this implies
to perform an input-completion of the speci�cation (similar to De�nition 12) �rst,
and could lead to test cases that are typically too large for use in practice.

Building an actual test case. To build an actual test case from test(S, ω), all
inputs are transformed into outputs and reciprocally (this operation is called
mirror ; in the test execution process, the actions of the implementation and
those of the test case must complement each other). For the IOSTSS depicted
in Figure 1 and the observerω2 depicted in Figure 3, the corresponding test case
(before simpli�cation) is depicted in Figure 4. Finally, the result is automatically
analysed and simpli�ed using the NBac tool [13] for statically eliminating tran-
sitions that cannot lead to the violation of the property any more (cf. Section 5).

200 V. Rusu, H. Marchand, and T. Jéron

Fig. 4. Before selection: test case obtained fromS (Figure 1) and ω2 (Figure 3)

5 Test Selection
The main goal of the testing process is to detect violations of the system's
required properties by the system's implementation. In this section we outline
a technique for statically detecting and eliminating locations and transitions
of a test case (generated from a speci�cation and a property as described in
Section 4) from which this goal cannot be achieved any more; the resulting test
case attempts to keep the implementation in states where it may still violate the
property. We show that this optimisation preserves correctness of test verdicts.

The violation of a property - described as an observer (ω,Violateω) - by an
implementation is materialised by reaching theViolateFail and Violate sets of
locations in the IOSTS test(S, ω)(cf. Section 4). For a state s of an IOSTS and
a location q of the IOSTS, we say that s is coreachable for the location q if there
exists a valuation v of the variables such that s

σ→ 〈q, v〉. Then, the test selection
process consists (ideally) in selecting, from a given test case, the subset of states
that are coreachable for the locations inViolate∪ViolateFail.

It should be quite clear that an exact computation of this set of states is
impossible in general. However, there exist techniques that allow to compute
an over-approximation of it. We here use one such technique based on abstract
interpretation and implemented in the NBac tool [13]. Given a locationq of an
IOSTS, the tool computes, for each location l, a symbolic coreachable state for q:

De�nition 14 (symbolic coreachable state). For l, q two locations of an
IOSTS S, we say 〈l, ϕl→q〉 is a symbolic coreachable state for q if ϕl→q is a
formula on the variables of the IOSTS such that, if a state of the form〈l, v〉 is
coreachable for q, then v |= ϕl→q holds.

I.e., 〈l, ϕl→q〉 over-approximates the states with location l that are coreachable
for q. The following algorithm uses this information forpruning a test case.

x = 0
STOP?

x = 0
STOP?

x := x− 1

MSG?(m)
m = x ∧ x > 0

m = x ∧ x > 0
MSG?(m)
x := x− 1

δ?
x < 0

δ?
x < 0
δ?

x �= 0

Fail

Fail

STOP?

����

��

��
p ≥ 0

x := p
START !(p)

δ?
Violate Violate

Automatic Veri�cation and Conformance Testing 201

De�nition 15 (pruning). For an IOSTS S and an observer (ω,Violateω) from
the set Ω(Sδ), let prune(S, ω) be the IOSTS computed as follows.

� �rst, the IOSTS mirror(test(S, ω)) is computed as in Section 4. Let L be
its set of locations, T its set of transitions, and Σ = Σ! ∪ Σ? its alphabet,
where Σ! = Σ?

S and Σ? = Σ!
S ∪ {δ}. Let also Inconc /∈ L be a new location.

� then, for each location l ∈ L, a symbolic coreachable state 〈l, ϕl→q〉, for each
location q ∈ Violate ∪ ViolateFail is computed. Let ϕl denote the formula∨

q ∈ Violate ∪ ViolateFail ϕl→q

� next, for each location l ∈ L of the IOSTS, and each transition t ∈ T of the
IOSTS with origin l, guard G, and label a,
• if a ∈ Σ! then

∗ if G ∧ ϕl is unsatis�able, then t is eliminated from T ,
∗ otherwise, the guard of t becomes G ∧ ϕl

• if a ∈ Σ?, then
∗ the guard of t becomes G ∧ ϕl

∗ a new transition is added to T , with origin l, destination Inconc,
action a, guard G ∧ ¬ϕl, and identity assignments.

The pruning operation consists in detecting transitions whose �ring leads to
states where the Violate and ViolateFail sets of locations are unreachable. This
is done by performing a coreachability analysis to these locations using the NBac
tool [13]. If such a �useless� transition is labelled by an output, then it may
be removed from the test case (a test case controls its outputs, hence, it may
decide not to perform an output if violations of the property cannot be detected
afterwards). On the other hand, inputs cannot be prevented from occurring,
hence, the transitions labelled by inputs, by which the Violate and ViolateFail
sets of locations cannot be reached any more, are reoriented to a new location,
called Inconc. Reaching Inconc during test execution is interpreted as a verdict:

Inconc: violations of the property cannot be detected any more

Proposition 4. The test case obtained by after pruning is correct, i.e., Propo-
sitions 1, 2 and 3 still hold when test(S, ω) is replaced with prune(S, ω).

The test case obtained after pruning test(S, ω2) is depicted in Figure 5. It starts
by sending a START with a positive parameter p to the implementation, and
then waits for inputs. If the implementation replies withSTOP, the test execu-
tion terminates with a verdict, which depends on whether the parameterp was
strictly positive or was equal to zero:

� If p > 0, the sequence START (p) · STOP exhibits a non-conformance be-
tween implementation (which accepts this sequence) and speci�cation (which
does not accept it). This sequence is also a witness for the violation of the
property by the implementation: the verdict isViolateFail;

� If p = 0, START (p) ·STOP is a witness for violation of the property de�ned
by ω2 by both implementation and speci�cation: the verdict isViolate.

202 V. Rusu, H. Marchand, and T. Jéron

Fail

Inconc

*?

*?

START !(p)
x := 0

p ≥ 0

STOP?
x = 0

Violate
Fail Violate

x > 0
STOP?

MSG?(m)

Fig. 5. After selection: test case obtained from S (Figure 1) and ω2 (Figure 3)

Finally, if the implementation replies withMSG after START, the current test
case cannot detect violations of the property any more, and the verdict isInconc.

6 Conclusion and Related Work
A system may be viewed at several levels of abstraction: high-levelproperties,
operational speci�cation, and black-box implementation. In our framework prop-
erties and speci�cations are described using Input-Output Symbolic Transition
Systems (IOSTS), which are extended automata that operate on symbolic vari-
ables and communicate with the environment through input and output actions
carrying parameters. IOSTS are given a formal semantics in terms of input-
output labelled transition systems (IOLTS). The implementation is a black box,
but it is assumed that its semantics can be described by an unknown IOLTS.
This allows to formally link the implementation and the speci�cation by a confor-
mance relation. A satisfaction relation links them both to higher-level properties.

A validation methodology is proposed for checking these relations, i.e., for de-
tecting inconsistencies between the di�erent views of the system: First, the prop-
erties are automatically veri�ed on the speci�cation using abstract interpretation
techniques. Then, test cases are automatically generated from the speci�cation
and the properties, and are executed on the implementation of the system. If the
veri�cation step was successful, that is, it has established that the speci�cation
satis�es a property, the test execution may detect the violation of the property
by the implementation and the violation of the conformance relation between
implementation and speci�cation. On the other hand, if the veri�cation did not
allow to prove a property, the test execution may additionally detect a violation
of the property by the speci�cation. Any inconsistencies obtained in this man-
ner are reported to the user in the form of test verdicts. The approach is proved
correct and is illustrated on a simple example. The full version of this paper [17]
illustrates the approach on a larger example (the BRP protocol [11]).

Automatic Veri�cation and Conformance Testing 203

Related Work. In [8] an approach for generating tests from a speci�cation and
from observers describing linear-time temporal logic requirements is described.
The generated test cases do not check for conformance, they only check the fact
that the implementation does not violate the requirements.

The approach described in [2] considers a speci�cationS and an invariant P
assumed to hold on S. Then, mutants S′ of S are built using standard mutation
operators, and a combined machine is generated, which extends sequences ofS
with sequences of S′. Next, a model checker is used to generate sequences that
violate P , which prove that S′ is a mutant of S violating P . Finally, the obtained
sequences are interpreted as test cases to be executed on the implementation.

The authors of [9] start from a speci�cationS and a temporal-logic propertyP
assumed to hold onS, and use the ability of model checkers to construct counter-
examples for ¬P on S. These counter-examples can be interpreted aswitnesses
(i.e., test cases) for P on S. The papers [3, 12] extend this idea by formalising
standard coverage criteria (all-de�nitions, all-uses,etc) using observers (resp. in
temporal logic). Again, test cases are generated by model checking the observers
(or the temporal-logic formulas) on the speci�cation.

The approaches described in all these papers rely on model checking, hence,
they only work for �nite-state systems; moreover, they do not formally relate
satisfaction of properties to conformance testing, and, except for [8], they do not
formally de�ne a conformance relation.

In [18] we present an approach for combining model checking and confor-
mance testing for �nite-state systems, which can be seen as a �rst step of the
approach presented here, which deals with in�nite-state systems. In the �nite-
state framework of [18] veri�cation is decidable, which heavily in�uences the
whole approach: for example the test generation algorithm (based on enumera-
tive model checking) does not need to take into account the possibility that the
property might be violated by the speci�cation.

A di�erent approach for combining model checking and black-box testing is
black-box checking [16]. Under some assumptions on the implementation (the
implementation is deterministic; an upper bound n on its number of states is
known), the black-box checking approach constructs a complete test suite of size
exponential in n for checking properties expressed by Büchi automata.

Our approach can also be related to the combination of veri�cation, testing
and monitoring proposed in [10]. In their approach, monitoring is passive (pure
observation), whereas ours is reactive and adaptative, guided by the choice of
inputs to deliver to the system as pre-computed in a test case.

Finally, in [14] we propose a symbolic algorithm for selecting test cases from a
speci�cation be means of so-called test purposes. The di�erence with the present
paper lies mainly in methodology. Test purposes in [14] are essentially a prag-
matic means for test selection - they have to be provided by the user. In contrast,
test selection in the present paper consists in automatically attempting to vio-
late a safety property that was automatically veri�ed (succesfully or not) on the
speci�cation. Moreover, test purposes can be classi�ed asreachability properties,
which have an exactly opposite semantics to the safety properties considered here
(reachability properties are negations of safety properties).

204 V. Rusu, H. Marchand, and T. Jéron

References
1. ISO/IEC 9646. Conformance Testing Methodology and Framework, 1992.
2. P. Ammann, W. Ding, and D. Xu. Using a model checker to test safety properties.

In International Conference on Engineering of Complex Computer Systems. IEEE
Computer Society, 2001.

3. J. Blom, A. Hessel, B. Jonnson, and P. Pettersson. Specifying and generating test
cases using observer automata. In Workshop on Formal Approaches to Software
Testing (Fates'04), pages 137�152, 2004.

4. E. Brinskma. A theory for the derivation of tests. InProtocol Speci�cation, Testing
and Veri�cation (PSTV'88), pages 63�74, 1988.

5. E. Brinskma, A. Alderen, R. Langerak, J. van de Laagemat, and J. Tretmans.
A formal approach to conformance testing. In Protocol Seci�cation, Testing and
Veri�cation (PSTV'90), pages 349�363, 1990.

6. D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. STG: a symbolic test genera-
tion tool. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS'02), number 2280 in LNCS, pages 470�475, 2002.

7. P. Cousot and R. Cousot. Abstract intrepretation: a uni�ed lattice model for static
analysis of programs by construction or approximation of �xpoints. In4th ACM
Symposium on Principles of Programming Languages, pages 238�252, 1977.

8. J.C. Fernandez, L. Mounier, and C. Pachon. Property-oriented test generation. In
Formal Aspects of Software Testing Workshop, number 2931 in LNCS, 2003.

9. A. Gargantini and C.L. Heitmeyer. Using model checking to generate tests from
requirements speci�cations. In ESEC/SIGSOFT FSE, pages 146�162, 1999.

10. K. Havelund and G. Rosu. Synthesizing monitors for safety properties. In Int.
Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS'02), Grenoble, France, number 2280 in LNCS, pages 342�356, 2002.

11. L. Helmink, M. P. A. Sellink, and F. Vaandrager. Proof-checking a data link
protocol. In Types for Proofs and Programs (TYPES'94), number 806 in LNCS,
pages 127�165, 1994.

12. H. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal logic based theory of test
coverage and generation. In Tools and Algorithms for Construction and Analysis
of Systems (TACAS'02), number 2280 in LNCS, pages 327�341, 2002.

13. B. Jeannet. Dynamic partitioning in linear relation analysis. Formal Methods in
System Design, 23(1):5�37, 2003.

14. B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva. Symbolic test selection based on
approximate analysis. In Int. Conference on Tools and Algorithms for Construction
and Analysis of Systems (TACAS'05), Grenoble, France (to appear), 2005.

15. N. Lynch and M. Tuttle. Introduction to IO automata.CWI Quarterly, 3(2), 1999.
16. D. Peled, M. Vardi, and M. Yannakakis. Black-box checking.Journal of Automata,

Languages and Combinatorics, 7(2):225 � 246, 2001 2001.
17. V. Rusu, H. Marchand, and T. Jéron. Veri�cation and symbolic test generation

for safety properties. Technical Report 1640, IRISA, august 2004. Available at
http://www.irisa.fr/vertecs/Publis/Ps/PI-1640.pdf.

18. V. Rusu, H. Marchand, V. Tschaen, T. Jéron, and B. Jeannet. From safety ver-
ifcation to safety testing. In Intl. Conf. on Testing of Communicating Systems
(TestCom04), number 2978 in LNCS, 2004.

19. J. Tretmans. Testing concurrent systems: A formal approach. InCONCUR'99,
number 1664 in LNCS, pages 46�65, 1999.

20. E. Zinovieva. Symbolic Test Generation for Reactive Systems. PhD thesis, Univer-
sity of Rennes I, November 2004.

	Introduction
	The IOSTS Model
	Verification and Conformance Testing with IOSTS
	Parallel Product
	Quiescence and Suspension IOSTS
	Verification of Safety Properties
	Conformance Testing

	Test Generation for Safety and Conformance
	Test Selection
	Conclusion and Related Work
	References

