Abstract
Exploring digital collections to find information relevant to a user’s interests is a challenging task. Algorithms designed to solve this relevant information problem base their relevance computations on user profiles in which representations of the users’ interests are maintained. This paper presents a new method, based on the classical Rocchio algorithm for text categorization, able to discover user preferences from the analysis of textual descriptions of items in online catalogues of e-commerce Web sites. Experiments have been carried out on a dataset of real users, and results have been compared with those obtained using an Inductive Logic Programming (ILP) approach and a probabilistic one.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asnicar, F., Tasso, C.: ifweb: a prototype of user model-based intelligent agent for documentation filtering and navigation in the word wide web. In: Proceedings of 1st Int. Workshop on adaptive systems and user modeling on the World Wide Web, pp. 3–12 (1997)
Billsus, D., Pazzani, M.J.: A hybrid user model for news story classification. In: Proceedings of the Seventh International Conference on User Modeling, Banff, Canada, pp. 99–108 (1999)
Esposito, F., Semeraro, G., Ferilli, S., Degemmis, M., Di Mauro, N., Basile, T.M.A., Lops, P.: Evaluation and validation of two approaches to user profiling. In: Proc. of the ECML/PKDD-2003 First European Web Mining Forum, pp. 51–63 (2003)
Lieberman, H.: Letizia: an agent that assists web browsing. In: Nédellec, C., Rouveirol, C. (eds.) Proceedings of the International Joint Conference on Artificial Intelligence, pp. 924–929 (1995)
Magnini, B., Strapparava, C.: Improving user modelling with content-based techniques. In: Proc. of 8th International Conference on User Modeling, pp. 74–83. Springer, Heidelberg (2001)
Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)
Mladenic, D.: Text-learning and related intelligent agents: a survey. IEEE Intelligent Systems 14(4), 44–54 (1999)
Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: Proceedings of the 5th ACM Conference on Digital Libraries, San Antonio, US, pp. 195–204. ACM Press, New York (2000)
Orkin, M., Drogin, R.: Vital Statistics. McGraw-Hill, New York (1990)
Pazzani, M., Billsus, D.: Learning and revising user profiles: The identification of interesting web sites. Machine Learning 27(3), 313–331 (1997)
Rocchio, J.: Relevance feedback information retrieval. In: Salton, G. (ed.) The SMART retrieval system - experiments in automated document processing, pp. 313–323. Prentice-Hall, Englewood Cliffs (1971)
Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)
Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1), 1–47 (2002)
Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., Ferilli, S.: A logic framework for the incremental inductive synthesis of datalog theories. In: Fuchs, N.E. (ed.) LOPSTR 1997. LNCS, vol. 1463, pp. 300–321. Springer, Heidelberg (1998)
Stefani, A., Strapparava, C.: Personalizing access to web sites: The siteif project. In: Proc. of 2nd Workshop on Adaptive Hypertext and Hypermedia (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Degemmis, M., Lops, P., Ferilli, S., Di Mauro, N., Basile, T.M.A., Semeraro, G. (2005). Learning User Profiles from Text in e-Commerce. In: Li, X., Wang, S., Dong, Z.Y. (eds) Advanced Data Mining and Applications. ADMA 2005. Lecture Notes in Computer Science(), vol 3584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527503_45
Download citation
DOI: https://doi.org/10.1007/11527503_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27894-8
Online ISBN: 978-3-540-31877-4
eBook Packages: Computer ScienceComputer Science (R0)