Abstract
In this paper, we design genetic algorithm and simulated annealing algorithm and their parallel versions to solve the Closest String Problem. Our implementation and experiments show usefulness of the parallel GA and SA algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Frances, M., Litman, A.: On covering problems of codes. Theory of Computing System 30, 113–119 (1997)
Lanctot, K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection problems. Information and Computation 185, 41–55 (2003)
Li, M., Ma, B., Wang, L.: Distinguish string search problems. In: Processings of the Thirty-first Annual ACM Symposium on Theory of Computing, pp. 473–482 (1999)
Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (1983)
Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation o State Calculations by Fast Computing Machines. J. Chem. Phys. 21, 1087–1092 (1953)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, X., He, H., Sýkora, O. (2005). Parallel Genetic Algorithm and Parallel Simulated Annealing Algorithm for the Closest String Problem. In: Li, X., Wang, S., Dong, Z.Y. (eds) Advanced Data Mining and Applications. ADMA 2005. Lecture Notes in Computer Science(), vol 3584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527503_70
Download citation
DOI: https://doi.org/10.1007/11527503_70
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27894-8
Online ISBN: 978-3-540-31877-4
eBook Packages: Computer ScienceComputer Science (R0)