Abstract
Existing mining association rules in relational tables only focus on discovering the relationship among large data items in a database. However, association rule for significant rare items that appear infrequently in a database but are highly related with other items is yet to be discovered. In this paper, we propose an algorithm called Extraction Least Pattern (ELP) algorithm that using a couple of predefined minimum support thresholds. Results from the implementation reveal that the algorithm is capable of mining rare item in multi relational tables.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Saar-Tsechansky, M., Pliskin, N., Rabinowitz, G., Porath, A.: Mining Relational Patterns from Multiple Relational Tables. Decision Support Systems 27(1-2), 177–195
Agrawal, R., Srikant, R.: Mining Qualitative Association Rules in Large Relational Tables. In: SIGMOD 1996, Montreal, Canada (June 1996)
Shang, X., Sattler, K., Geist, I.: Efficient Frequent Pattern Mining in Relational Databases. In: Workshop GI Working Group of the Knowledge Discovery (AKKD) in the context of the LWA (2004) (2004)
Agrawal, R., Srikant, R.: Mining Association Rules Between Sets of Items in Large Databases. In: Proceedings of ACM SIGMOD, pp. 207–216
Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proc. Of the 11th International Conference Data Engineering (1995)
Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proceedings of the VLDB Conference, pp. 487–499
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: an overview. In: Fayyad, U.M., Piastetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, Cambridge (1996)
Swami, A., Houtsma, M.: Set-oriented Data Mining in Relational Databases. In: International Conference Management of Data Engineering, Taipei, Taiwan (March 1995)
Agrawal, R., Srikant, R.: Mining Generalized Association Rules. In: Proc. Of the 21st International Conference on VLDB, Zurich, Switzerland (September 1995)
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast Discovery of Association Rules. In: Fayyad, U.M., Piastetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, Cambridge
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge Discovery in Databases. In: Fayyad et al: Advances in Knowledge Discovery and Data Mining. AAAI Press/The MIT Press, Menlo Park (1996)
Dunham, M.H.: Data Mining: Introductory and Advanced Topics. Prentice-Hall, New Jersey (2003)
Liu, B., Hsu, W., Ma, Y.: Mining Association Rules with Multiple Minimum Supports. In: Proceedings of the 5th ACM SICKDD International Conference on Knowledge Discovery and Data Mining, San Deigo, California, United States, August 1999, pp. 337–341 (1999)
Yun, H., Ha, D., Hwang, B., Ryu, K.H.: Mining Association Rules On Significant Rare Data Using Relative Support. The Journal of Systems and Software 67(3), 181–191 (2003)
Nabila, N.F., Deris, M.M., Saman, M.Y., Mamat, A.: Association Rules On Significant Rare Data Using Second Support (forthcoming)
Tsai, P.S.M., Chen, C.-M.: Mining Interesting Association Rules From Customer Databases and Transaction Databases. Information Systems 29(8), 685–696 (2004)
Sarawagi, S., Thomas, S., Agrawal, R.: Integrating Association Rule Mining with Relational Database Systems: Alternatives and Impilcations. SIGMOD Record (ACM Special Interest Group on Management of Data) 27(2), 343–355
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Selamat, S.H., Deris, M.M., Mamat, R., Bakar, Z.A. (2005). Mining Least Relational Patterns from Multi Relational Tables. In: Li, X., Wang, S., Dong, Z.Y. (eds) Advanced Data Mining and Applications. ADMA 2005. Lecture Notes in Computer Science(), vol 3584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527503_9
Download citation
DOI: https://doi.org/10.1007/11527503_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27894-8
Online ISBN: 978-3-540-31877-4
eBook Packages: Computer ScienceComputer Science (R0)