Abstract
In this paper we introduce UBCSAT, a new implementation and experimentation environment for Stochastic Local Search (SLS) algorithms for SAT and MAX-SAT. Based on a novel triggered procedure architecture, UBCSAT provides implementations of numerous well-known and widely used SLS algorithms for SAT and MAX-SAT, including GSAT, WalkSAT, and SAPS; these implementations generally match or exceed the efficiency of the respective original reference implementations. Through numerous reporting and statistical features, including the measurement of run-time distributions, UBCSAT facilitates the advanced empirical analysis of these algorithms. New algorithm variants, SLS algorithms, and reporting features can be added to UBCSAT in a straightforward and efficient way. UBCSAT is implemented in C and runs on numerous platforms and operating systems; it is publicly and freely available at www.satlib.org/ ubcsat.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Audemard, G., Le Berre, D., Roussel, O., Lynce, I., Marques-Silva, J.: OpenSAT: an open source SAT software project. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–509. Springer, Heidelberg (2004)
Fukunaga, A.: Efficient implementations of SAT local search. In: Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 287–292. Springer, Heidelberg (2005)
Gent, I.P., Walsh, T.: Towards an understanding of hill–climbing procedures for SAT. In: Proc. of the Eleventh Nat’l Conf. on Artificial Intelligence (AAAI 1993), pp. 28–33 (1993)
Gent, I.P., Walsh, T.: Unsatisfied variables in local search. In: Hybrid Problems, Hybrid Solutions, pp. 73–85 (1995)
Hansen, P., Jaumard, B.: Algorithms for the maximum satisfiability problem. Computing 44, 279–303 (1990)
Hoos, H.H.: On the run-time behaviour of stochastic local search algorithms for SAT. In: Proc. of the Sixteenth Nat’l Conf. on Artificial Intelligence (AAAI 1999), pp. 661–666 (1999)
Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: Proc. of the 18th Nat’l Conf. in Artificial Intelligence (AAAI 2002), pp. 655–660 (2002)
Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Francisco (2005)
Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and probabilistic smoothing: Efficient dynamic local search for SAT. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 233–248. Springer, Heidelberg (2002)
Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. on Modeling & Computer Simulation 8(1), 3–30 (1998)
Mazure, B., Saïs, L., Grégoire, É.: Tabu search for SAT. In: Proc. of the Fourteenth Nat’l Conf. on Artificial Intelligence (AAAI 1997), pp. 281–285 (1997)
McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search. In: Proc. of the Fourteenth Nat’l Conf. on Artificial Intelligence (AAAI 1997), pp. 321–326 (1997)
Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proc. of the 12th Nat’l Conf. on Artificial Intelligence (AAAI 1994), pp. 337–343 (1994)
Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability problems. In: Proc. of the Tenth Nat’l Conf. on Artificial Intelligence (AAAI 1992), pp. 459–465 (1992)
Smyth, K., Hoos, H.H., Stützle, T.: Iterated robust tabu search for MAX-SAT. In: Proc. of the 16th Conf. of the Canadian Society for Computational Studies of Intelligence, pp. 129–144 (2003)
Tompkins, D.A.D., Hoos, H.H.: Warped landscapes and random acts of SAT solving. In: Proc. of the Eighth Int’l Symposium on Artificial Intelligence and Mathematics (ISAIM 2004) (2004)
Van Hentenryck, P., Michel, L.: Control abstractions for local search. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 65–80. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tompkins, D.A.D., Hoos, H.H. (2005). UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT and MAX-SAT. In: Hoos, H.H., Mitchell, D.G. (eds) Theory and Applications of Satisfiability Testing. SAT 2004. Lecture Notes in Computer Science, vol 3542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527695_24
Download citation
DOI: https://doi.org/10.1007/11527695_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27829-0
Online ISBN: 978-3-540-31580-3
eBook Packages: Computer ScienceComputer Science (R0)