Skip to main content

From Quantum Physics to Programming Languages: A Process Algebraic Approach

  • Conference paper
Unconventional Programming Paradigms (UPP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3566))

Included in the following conference series:

Abstract

Research in quantum computation is looking for the consequences of having information encoding, processing and communication exploit the laws of quantum physics, i.e. the laws of the ultimate knowledge that we have, today, of the foreign world of elementary particles, as described by quantum mechanics. After an introduction to the principles of quantum information processing and a brief survey of the major breakthroughs brought by the first ten years of research in this domain, this paper concentrates on a typically “computer science” way to reach a deeper understanding of what it means to compute with quantum resources, namely on the design of programming languages for quantum algorithms and protocols, and on the questions raised by the semantics of such languages. Special attention is devoted to the process algebraic approach to such languages, through a presentation of QPAlg, the Quantum Process Algebra which is being designed by the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, S., Coecke, B.: Physical traces: Quantum vs. Classical Information Processing. In: Blute, R., Selinger, P. (eds.) Category Therory and Computer Science (CTCS 2002). Electronic Notes in Theoretical Computer Science, vol. 69. Elsevier, Amsterdam (2003)

    Google Scholar 

  2. Abramsky, S., Coecke, B.: A Categorical Semantics of Quantum Protocols. In: Ganzinger, H. (ed.) Logic in Computer Science (LICS 2004). IEEE Proceedings, pp. 415–425 (2004)

    Google Scholar 

  3. Bennet, C., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters: Teleporting an Unknown Quantum State via Dual Classical and EPR Channels. Physical Review Letters 70, 1895–1899 (1993)

    Article  MathSciNet  Google Scholar 

  4. Birkhoff, G., von Neumann, J.: Annals of Mathematics, vol. 37, p. 823 (1936)

    Google Scholar 

  5. Brunet, O., Jorrand, P.: Dynamic Logic for Quantum Programs. International Journal of Quantum Information (IJQI) 2(1), 45–54 (2004)

    Article  MATH  Google Scholar 

  6. Carloza, D., Cuartero, F., Valero, V., Pelayo, F.L., Pardo, J.: Algebraic Theory of Probabilistic and Nondeterministic Processes. The Journal of Logic and Algebraic Programming 55(1-2), 57–103 (2003)

    Article  MathSciNet  Google Scholar 

  7. D’Hondt, E., Panangaden, P.: Quantum Weakest Preconditions. In: [25]

    Google Scholar 

  8. Deutsch, D.: Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proceedings Royal Society London A 400, 97 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Durr, C., Heiligman, M., Hoyer, P., Mhalla, M.: Quantum query complexity of some graph problems. In: Diaz, J. (ed.) ICALP 2004. LNCS, vol. 3142, pp. 481–493. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Feynmann, R.P.: Simulating Physics with Computers. International Journal of Theoretical Physics 21, 467 (1982)

    Article  Google Scholar 

  11. Gay, S.J., Nagarajan, R.: Communicating Quantum Processes. In: [25],

    Google Scholar 

  12. Girard, J.Y.: Between Logic and Quantic: a Tract. Unpublished manuscript (2004)

    Google Scholar 

  13. Grover, L.K.: A Fast Quantum Mechanical Algorithm for Database Search. In: Proceedings 28th ACM Symposium on Theory of Computing (STOC 1996), pp. 212–219 (1996)

    Google Scholar 

  14. Jorrand, P., Perdrix, S.: Unifying Quantum Computation with Projective Measurements only and One-Way Quantum Computation. Los Alamos e-print arXiv (2004), http://arxiv.org/abs/quant-ph/0404125

  15. Kempe, J.: Quantum Random Walks - An Introductory Overview. Los Alamos e-print arXiv (2003), http://arxiv.org/abs/quant-ph/0303081

  16. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation. American Mathematical Society, Graduate Studies in Mathematics 47 (2002)

    Google Scholar 

  17. Lalire, M., Jorrand, P.: A Process Algebraic Approach to Concurrent and Distributed Quantum Computation: Operational Semantics. In: [25]

    Google Scholar 

  18. Leung, D.W.: Quantum Computation by Measurements. Los Alamos e-print arXiv (2003), http://arxiv.org/abs/quant-ph/0310189

  19. Lomont, C.: The Hidden Subgroup Problem – Review and Open Problems. Los Alamos e-print arXiv (2004), http://arxiv.org/abs/quant-ph/0411037

  20. Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1999)

    Google Scholar 

  21. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  22. Ömer, B.: Quantum Programming in QCL. Master’s Thesis, Institute of Information Systems, Technical University of Vienna (2000)

    Google Scholar 

  23. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based Quantum Computation with Cluster States. Los Alamos e-print arXiv (2003), http://arxiv.org/abs/quant-ph/0301052

  24. Rieffel, E.G., Polak, W.: An Introduction to Quantum Computing for Non-Physicists. Los Alamos e-print arXiv (1998), http://arxiv.org/abs/quant-ph/9809016

  25. Selinger, P. (ed.) Proceedings of 2nd International Workshop on Quantum Programming Languages (2004), http://quasar.mathstat.uottawa.ca/~selinger/qpl2004/proceedings.html

  26. Selinger, P.: Towards a Quantum Programming Language. Mathematical Structures in Computer Science. Cambridge University Press 14(4), 525–586 (2004)

    MathSciNet  Google Scholar 

  27. Shor, P.W.: Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, IEEE Proceedings (1994)

    Google Scholar 

  28. Van Tonder, A.: A Lambda Calculus for Quantum Computation. Los Alamos e-print arXiv (2003), http://arxiv.org/abs/quant-ph/0307150

  29. Van Tonder, A.: Quantum Computation, Categorical Semantics and Linear Logic. Los Alamos e-print arXiv (2003), http://arxiv.org/abs/quant-ph/0312174

  30. Zuliani, P.: Quantum Programming. PhD Thesis, St. Cross College, Oxford University (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jorrand, P., Lalire, M. (2005). From Quantum Physics to Programming Languages: A Process Algebraic Approach. In: Banâtre, JP., Fradet, P., Giavitto, JL., Michel, O. (eds) Unconventional Programming Paradigms. UPP 2004. Lecture Notes in Computer Science, vol 3566. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527800_1

Download citation

  • DOI: https://doi.org/10.1007/11527800_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27884-9

  • Online ISBN: 978-3-540-31482-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics