Abstract
All information processing systems found in living organisms are based on chemical processes. Harnessing the power of chemistry for computing might lead to a new unifying paradigm coping with the rapidly increasing complexity and autonomy of computational systems. Chemical computing refers to computing with real molecules as well as to programming electronic devices using principles taken from chemistry. The paper focuses on the latter, called artificial chemical computing, and discusses several aspects of how the metaphor of chemistry can be employed to build technical information processing systems. In these systems, computation emerges out of an interplay of many decentralized relatively simple components analogized to molecules. Chemical programming encompassed then the definition of molecules, reaction rules, and the topology and dynamics of the reaction space. Due to the self-organizing nature of chemical dynamics, new programming methods are required. Potential approaches for chemical programming are discussed and a road map for developing chemical computing into a unifying and well grounded approach is sketched.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Banâtre, J.P., Métayer, D.L.: The GAMMA model and its discipline of programming. Sci. Comput. Program. 15, 55–77 (1990)
Berry, G., Boudol, G.: The chemical abstract machine. Theor. Comput. Sci. 96, 217–248 (1992)
Adamatzky, A.: Universal dynamical computation in multidimensional excitable lattices. Int. J. Theor. Phys. 37, 3069–3108 (1998)
Dörner, D.: Bauplan einer Seele. Rowohlt, Reinbeck (1999)
Brooks, R.A.: Coherent behavior from many adaptive processes. In: Cliff, D., Husbands, P., Meyer, J.A., Wilson, S. (eds.) From animals to animats, vol. 3, pp. 22–29. MIT Press, Cambridge (1994)
Conrad, M.: Information processing in molecular systems. Currents in Modern Biology 5, 1–14 (1972)
Liberman, E.A.: Cell as a molecular computer (MCC). Biofizika 17, 932–943 (1972)
Liberman, E.A.: Analog-digital molecular cell. BioSytems 11, 111–124 (1979)
Zauner, K.P.: Molecular information technology. Cr. Rev. Sol. State 30, 33–69 (2005)
Tilden, W.A.: Introduction to the Study of Chemical Philosophy, 6th edn. Longmans, London (1888)
Küppers, B.O.: Information and the Origin of Life. MIT Press, Cambridge (1990)
Adleman, L.M.: Molecular computation of solutions to combinatorical problems. Science 266, 1021 (1994)
Conrad, M., Zauner, K.P.: Conformation-driven computing: A comparison of designs based on DNA, RNA, and protein. Supramol. Sci. 5, 787–790 (1998)
Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural networks and turing machines. In: Proc. Natl. Acad. Sci., USA, vol. 88, pp. 10983–10987 (1991)
Bazhenov, V.Y., Soskin, M.S., Taranenko, V.B., Vasnetsov, M.V.: Biopolymers for real-time optical processing. In: Arsenault, H.H. (ed.) Optical Processing and Computing, San Diego, pp. 103–144. Academic Press, London (1989)
Pǎun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000)
Giavitto, J.L., Michel, O.: MGS: a rule-based programming language for complex objects and collections. In: van den Brand, M., Verma, R. (eds.) Electronic Notes in Theoretical Computer Science, vol. 59. Elsevier Science Publishers, Amsterdam (2001)
Laing, R.: Artificial organisms and autonomous cell rules. J. Cybernetics 2, 38–49 (1972)
Suzuki, H., Ono, N., Yuta, K.: Several necessary conditions for the evolution of complex forms of life in an artificial environment. Artif. Life 9, 153–174 (2003)
Banâtre, J.P., Métayer, D.L.: A new computational model and its discipline of programming. Technical report RR-0566, INRIA (1986)
Suzuki, Y., Tanaka, H.: Symbolic chemical system based on abstract rewriting and its behavior pattern. Artif. Life and Robotics 1, 211–219 (1997)
Suzuki, Y., Tsumoto, S., Tanaka, H.: Analysis of cycles in symbolic chemical system based on abstract rewriting system on multisets. In: Langton, C.G., Shimohara, K. (eds.) Artificial Life V, Cambridge, MA, pp. 521–528. MIT Press, Cambridge (1996)
Cliff, D., Grand, S.: The creatures global digital ecosystem. Artif. Life 5, 77–94 (1999)
Astor, J.C., Adami, C.: A developmental model for the evolution of artificial neural networks. Artif. Life 6, 189–218 (2000)
Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T.F., Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R., Homsy, G.: Amorphous computing. Commun. ACM 43, 74–82 (2000)
Husbands, P., Smith, T., Jakobi, N., O’Shea, M.: Better living through chemistry: Evolving gasnets for robot control. Connect. Sci. 10, 185–210 (1998)
Seelig, L.A., Rössler, O.E.: A chemical reaction flip-flop with one unique switching input. Zeitschrift für Naturforschung 27b, 1441–1444 (1972)
Barrett, C.L., Mortveit, H.S., Reidys, C.M.: Elements of a theory of simulation II: sequential dynamical systems. Appl. Math. Comput. 107, 121–136 (2000)
Reidys, C.M.: On acyclic orientations and sequential dynamical systems. Adv. Appl. Math. 27, 790–804 (2001)
Dittrich, P., di Fenizio, P.S.: Chemical organization theory: Towards a theory of constructive dynamical systems , preprint arXiv:q-bio.MN/0501016 x, pp. 1–7 (2005) (submitted)
Ziegler, J., Banzhaf, W.: Evolving control metabolisms for a robot. Artif. Life 7, 171–190 (2001)
Bedau, M.A., Buchanan, A., Gazzola, G., Hanczyc, M., Maeke, T., McCaskill, J., Poli, I., Packard, N.H.: Evolutionary design of a DDPD model of ligation. In: Talbi, E.-G., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds.) EA 2005. LNCS, vol. 3871, pp. 201–212. Springer, Heidelberg (2006) (in press)
Speroni Di Fenizio, P., Dittrich, P.: Artificial chemistry’s global dynamics. movement in the lattice of organisation. The Journal of Three Dimensional Images 16, 160–163 (2002)
Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries - a review. Artif. Life 7, 225–275 (2001)
Banzhaf, W.: Self-replicating sequences of binary numbers – foundations I and II: General and strings of length n = 4. Biol. Cybern. 69, 269–281 (1993)
Fontana, W., Buss, L.W.: ’The arrival of the fittest’: Toward a theory of biological organization. Bull. Math. Biol. 56, 1–64 (1994)
Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. J. Chem. Inf. Comput. Sci. 43, 2759–2767 (2003)
Gillespie, D.T.: Exact stochastic simulation of coupled chemical-reactions. J. Phys. Chem. 81, 2340–2361 (1977)
Mayer, B., Rasmussen, S.: Dynamics and simulation of micellar self-reproduction. Int. J. Mod. Phys. C 11, 809–826 (2000)
Cardelli, L.: Brane calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)
Dittrich, P.: Selbstorganisation in einem System von Binärstrings mit algorithmischen Sekundärstrukturen. Diploma thesis, Dept. of Computer Science, University of Dortmund (1995)
Speroni di Fenizio, P.: A less abstract artficial chemistry. In: Bedau, M.A., McCaskill, J.S., Packard, N.H., Rasmussen, S. (eds.) Artificial Life VII, pp. 49–53. MIT Press, Cambridge (2000)
Banzhaf, W., Dittrich, P., Rauhe, H.: Emergent computation by catalytic reactions. Nanotechnology 7, 307–314 (1996)
Eigen, M., Schuster, P.: The hypercycle: a principle of natural self-organisation, part A. Naturwissenschaften 64, 541–565 (1977)
Fontana, W., Wagner, G., Buss, L.W.: Beyond digital naturalism. Artif. Life 1(2), 211–227 (1994)
Dittrich, P., Banzhaf, W.: Self-evolution in a constructive binary string system. Artif. Life 4, 203–220 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dittrich, P. (2005). Chemical Computing. In: Banâtre, JP., Fradet, P., Giavitto, JL., Michel, O. (eds) Unconventional Programming Paradigms. UPP 2004. Lecture Notes in Computer Science, vol 3566. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527800_2
Download citation
DOI: https://doi.org/10.1007/11527800_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27884-9
Online ISBN: 978-3-540-31482-0
eBook Packages: Computer ScienceComputer Science (R0)