Skip to main content

Face Reconstruction Across Different Poses and Arbitrary Illumination Conditions

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

  • 2302 Accesses

Abstract

In this paper, we present a novel method for face reconstruction from multi-posed face images taken under arbitrary unknown illumination conditions. Previous work shows that any face image can be represented by a set of low dimensional parameters: shape parameters, spherical harmonic basis (SHB) parameters, pose parameters and illumination coefficients. Thus, face reconstruction can be performed by recovering the set of parameters from the input images. In this paper, we demonstrate that the shape and SHB parameters can be estimated by minimizing the silhouettes errors and image intensity errors in a fast and robust manner. We propose a new algorithm to detect the corresponding points between the 3D face model and the input images by using silhouettes. We also apply a model-based bundle adjustment technique to perform this minimization. We provide a series of experiments on both synthetic and real data and experimental results show that our method can have an accurate face shape and texture reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Basri, R., Jacobs, D.W.: Lambertian reflectance and linear subspaces. PAMI 25(2), 218–233 (2003)

    Google Scholar 

  2. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d-faces. In: SIGGRAPH (1999)

    Google Scholar 

  3. Blanz, V., Vetter, T.: Face recognition based on fitting a 3d morphable model. PAMI 25(9), 1063–1074 (2003)

    Google Scholar 

  4. Devernay, F., Faugeras, O.D.: Computing differential properties of 3d shape from stereoscopic images without 3d models. In: CVPR, pp. 208–213 (1994)

    Google Scholar 

  5. Dimitrijevic, M., Ilic, S., Fua, P.: Accurate face model from uncalibrated and ill-lit video sequences. In: CVPR, pp. 1034–1041 (2004)

    Google Scholar 

  6. Fua, P.: Regularized bundle adjustment to model heads from image sequences without calibration data. IJCV 38(2), 153–171 (2000)

    Article  MATH  Google Scholar 

  7. Gregory, M., Nielson: Scattered data modeling. In: Computer Graphics and Application (1993)

    Google Scholar 

  8. Laurentini, A.: The visual hull concept for silhouette based image understanding. PAMI 16(2), 150–162 (1994)

    Google Scholar 

  9. Lee, J., Moghaddam, B., Pfister, H., Machiraju, R.: Silhouette-based 3d face shape recovery. In: Graphics Interface (2003)

    Google Scholar 

  10. Matusik, W., Buehler, C., Raskar, R., McMillan, L., Gortle, S.J.: Image-based visual hulls. In: SIGGRAPH (2003)

    Google Scholar 

  11. Pighin, F., Hecker, J., Lischinski, D., Szeliski, R., Salesin, D.: Synthesizing realistic facial expressions from photographs. In: SIGGRAPH, pp. 75–84 (1998)

    Google Scholar 

  12. Proesmans, M., Vangool, L., Osterlinck, A.: Active acquisition fo 3d shape for moving objects. In: ICIP (1996)

    Google Scholar 

  13. Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps. In: SIGGRAPH (2001)

    Google Scholar 

  14. Romdhani, S., Blanz, V., Vetter, T.: Face identification by fitting a 3D morphable model using linear shape and texture error functions. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 3–19. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Samaras, D., Metaxas, D.: Incorporating illumination constraints in deformable models. In: CVPR, pp. 322–329 (1998)

    Google Scholar 

  16. Shan, Y., Liu, Z., Zhang, Z.: Model-based bundle adjustment with application to face modeling. In: ICCV (2001)

    Google Scholar 

  17. Sim, T., Baker, S., Bsat, M.: The cmu pose, illumination and expression database. PAMI, 1615–1618 (2003)

    Google Scholar 

  18. Tang, L., Huang, T.S.: Analysis-based facial expression synthesis. In: ICIP, vol. 94, pp. 98–102 (1996)

    Google Scholar 

  19. Zhang, L., Samaras, D.: Face recognition under variable lighting using harmonic image exemplars. In: CVPR, vol. I, pp. 19–25 (2003)

    Google Scholar 

  20. Zhang, L., Wang, S., Samaras, D.: Face synthessis and recognition from a single image under arbitrary unknow lighting using a spherival harmonic basis morphable model. In: CVPR (2005)

    Google Scholar 

  21. Zhang, Z., Deriche, R., Faugeras, O., Luong, Q.T.: A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artificial Intelligence Journal 78, 87–119 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, S., Zhang, L., Samaras, D. (2005). Face Reconstruction Across Different Poses and Arbitrary Illumination Conditions. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_10

Download citation

  • DOI: https://doi.org/10.1007/11527923_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics