Skip to main content

Comparative Assessment of Content-Based Face Image Retrieval in Different Color Spaces

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

  • 2329 Accesses

Abstract

Content-based face image retrieval is concerned with computer retrieval of face images (of a given subject) based on the geometric or statistical features automatically derived from these images. It is well known that color spaces provide powerful information for image indexing and retrieval by means of color invariants, color histogram, color texture, etc.. This paper assesses comparatively the performance of content-based face image retrieval in different color spaces using a standard algorithm, the Principal Component Analysis (PCA), which has become a popular algorithm in the face recognition community. In particular, we comparatively assess 12 color spaces (RGB, HSV, YUV, YCbCr, XYZ, YIQ, L * a * b *, U * V * W *, L * u * v *, I 1 I 2 I 3, HSI, and rgb) by evaluating 7 color configurations for every single color space. A color configuration is defined by an individual or a combination of color component images. Take the RGB color space as an example, possible color configurations are R, G, B, RG, RB, GB, and RGB. Experimental results using 1,800 FERET R, G, B images corresponding to 200 subjects show that some color configurations, such as R in the RGB color space and V in the HSV color space, help improve face retrieval performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhao, W., Chellappa, R., Phillips, J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Surveys 35, 399–458 (2003)

    Article  Google Scholar 

  2. Stiefelhagen, R., Yang, J., Waibel, A.: Modeling focus of attention for meeting index based on multiple cues. IEEE Trans. Neural Networks 13, 928–938 (2002)

    Article  Google Scholar 

  3. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, London (1990)

    MATH  Google Scholar 

  4. Liu, C.: Gabor-based kernel PCA with fractional power polynomial m odels for face recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 26, 572–581 (2004)

    Article  Google Scholar 

  5. Liu, C., Wechsler, H.: Robust coding schemes for indexing and retrieval from large face databases. IEEE Trans. on Image Processing 9, 132–137 (2000)

    Article  Google Scholar 

  6. Zhao, W., Chellappa, R.: Symmetric shape-from-shading using self-ratio image. Int. Journal Computer Vision 45, 55–75 (2001)

    Article  MATH  Google Scholar 

  7. Yu, H., Yang, J.: A direct lda algorithm for high-dimensional data - with application to face recognition. Pattern Recognition 34, V2067–V2070 (2001)

    Article  MATH  Google Scholar 

  8. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 13, 71–86 (1991)

    Article  Google Scholar 

  9. Garcia, C., Tziritas, G.: Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans. Multimedia 1, 264–277 (1999)

    Article  Google Scholar 

  10. Habili, N., Lim, C.: Hand and face segmentation using motion and color cues in digital image sequences. In: Proc. IEEE International Conference on Multimedia and Expo 2001, Tokyo, Japan (2001)

    Google Scholar 

  11. Wu, H., Chen, Q., Yachida, M.: Face detection from color images using a fuzzy pattern matching method. IEEE Trans. Pattern Analysis and Machine Intelligence 21, 557–563 (1999)

    Article  Google Scholar 

  12. Terrillon, J., Shirazi, M., Fukamachi, H., Akamatsu, S.: Comparative performance of different skin chrominance models and chrominance space for the automatic detection of human faces in color images. In: Proc. The Fourth International Conference on Face and Gesture Recognition, Grenoble, France (2000)

    Google Scholar 

  13. Ohta, Y.: Knowledge-Based Interpretation of Outdoor Natural Color Scenes. Pitman Publishing, London (1985)

    Google Scholar 

  14. Smith, A.: Color gamut transform pairs. Computer Graphics 12, 12–19 (1978)

    Article  Google Scholar 

  15. Gonzalez, R., Woods, R.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (2001)

    Google Scholar 

  16. Judd, D., Wyszecki, G.: Color in Business, Science and Industry. John Wiley & Sons, Inc., Chichester (1975)

    Google Scholar 

  17. Chamberlin, G., Chamberlin, D.: Colour: Its Measurement, Computation and Application. Heyden & Son, London (1980)

    Google Scholar 

  18. Moon, H., Phillips, P.: Analysis of pca-based face recognition algorithms. In: Bowyer, K.W., Phillips, P.J. (eds.) Empirical Evaluation Techniques in Computer Vision, Wiley-IEEE Computer Society, Chichester (1998)

    Google Scholar 

  19. Phillips, P., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face-recognition algorithms. Image and Vision Computing 16, 295–306 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shih, P., Liu, C. (2005). Comparative Assessment of Content-Based Face Image Retrieval in Different Color Spaces. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_108

Download citation

  • DOI: https://doi.org/10.1007/11527923_108

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics