Skip to main content

A Principled Approach to Score Level Fusion in Multimodal Biometric Systems

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

  • 2552 Accesses

Abstract

A multimodal biometric system integrates information from multiple biometric sources to compensate for the limitations in performance of each individual biometric system. We propose an optimal framework for combining the matching scores from multiple modalities using the likelihood ratio statistic computed using the generalized densities estimated from the genuine and impostor matching scores. The motivation for using generalized densities is that some parts of the score distributions can be discrete in nature; thus, estimating the distribution using continuous densities may be inappropriate. We present two approaches for combining evidence based on generalized densities: (i) the product rule, which assumes independence between the individual modalities, and (ii) copula models, which consider the dependence between the matching scores of multiple modalities. Experiments on the MSU and NIST multimodal databases show that both fusion rules achieve consistently high performance without adjusting for optimal weights for fusion and score normalization on a case-by-case basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A.K., Ross, A., Prabhakar, S.: An Introduction to Biometric Recognition. IEEE Transactions on Circuits and Systems for Video Technology, Special Issue on Image- and Video-Based Biometrics 14, 4–20 (2004)

    Google Scholar 

  2. Jain, A.K., Ross, A.: Multibiometric Systems. Communications of the ACM, Special Issue on Multimodal Interfaces 47, 34–40 (2004)

    Google Scholar 

  3. Ross, A., Jain, A.K.: Information Fusion in Biometrics. Pattern Recognition Letters, Special Issue on Multimodal Biometrics 24, 2115–2125 (2003)

    Google Scholar 

  4. Bigun, E.S., Bigun, J., Duc, B., Fischer, S.: Expert Conciliation for Multimodal Person Authentication Systems using Bayesian Statistics. In: Bigün, J., Borgefors, G., Chollet, G. (eds.) AVBPA 1997. LNCS, vol. 1206, pp. 291–300. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  5. Kittler, J., Hatef, M., Duin, R.P., Matas, J.G.: On Combining Classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 226–239 (1998)

    Article  Google Scholar 

  6. Lam, L., Suen, C.Y.: Optimal Combination of Pattern Classifiers. Pattern Recognition Letters 16, 945–954 (1995)

    Article  Google Scholar 

  7. Wang, Y., Tan, T., Jain, A.K.: Combining Face and Iris Biometrics for Identity Verification. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 805–813. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Toh, K.A., Jiang, X., Yau, W.Y.: Exploiting Global and Local Decisions for Multimodal Biometrics Verification. IEEE Transactions on Signal Processing 52, 3059–3072 (2004)

    Article  Google Scholar 

  9. Snelick, R., Uludag, U., Mink, A., Indovina, M., Jain, A.K.: Large Scale Evaluation of Multimodal Biometric Authentication Using State-of-the-Art Systems. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 450–455 (2005)

    Article  Google Scholar 

  10. Jain, A.K., Nandakumar, K., Ross, A.: Score Normalization in Multimodal Biometric Systems. To appear in Pattern Recognition (2005)

    Google Scholar 

  11. Griffin, P.: Optimal Biometric Fusion for Identity Verification. Identix Corporate Research Center Preprint RDNJ-03-0064 (2004)

    Google Scholar 

  12. Prabhakar, S., Jain, A.K.: Decision-level Fusion in Fingerprint Verification. Pattern Recognition 35, 861–874 (2002)

    Article  MATH  Google Scholar 

  13. Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman & Hall, CRC Press (1995)

    Google Scholar 

  14. Nelsen, R.B.: An Introduction to Copulas. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  15. Cherubini, U., Luciano, E., Vecchiato, W.: Copula Methods in Finance. Wiley, Chichester (2004)

    MATH  Google Scholar 

  16. Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)

    Article  Google Scholar 

  17. Jain, A.K., Hong, L., Bolle, R.: On-line Fingerprint Verification. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 302–314 (1997)

    Article  Google Scholar 

  18. Jain, A.K., Ross, A., Pankanti, S.: A Prototype Hand geometry-based Verification System. In: Proceedings of Second International Conference on AVBPA, Washington D.C., USA, pp. 166–171 (1999)

    Google Scholar 

  19. National Institute of Standards and Technology: NIST Biometric Scores Set (2004), Available at http://www.itl.nist.gov/iad/894.03/biometricscores

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dass, S.C., Nandakumar, K., Jain, A.K. (2005). A Principled Approach to Score Level Fusion in Multimodal Biometric Systems. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_109

Download citation

  • DOI: https://doi.org/10.1007/11527923_109

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics