Skip to main content

Iris Recognition Using Fourier-Wavelet Features

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

  • 2357 Accesses

Abstract

This paper presents an effective iris recognition system for iris localization, feature extraction, and matching. By combining the shift-invariant and the multi-resolution properties from Fourier descriptor and wavelet transform, the Fourier-Wavelet features are proposed for iris recognition. A similarity measure is adopted as the matching criterion. Four wavelet filters containing Haar, Daubechies-8, Biorthogonal 3.5, and Biorthogonal 4.4 are evaluated and they all perform better than the feature of Gaussian-Hermite moments. Experimental results demonstrate that the proposed features can provide promising performance for iris recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A., Bolle, R., Pankanti, S. (eds.): Biometrics - Personal Identification in Networked Society. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  2. Miller, B.: Vital Signs of Identity. IEEE Spectrum 31, 22–30 (1994)

    Article  Google Scholar 

  3. Wildes, R.P.: Iris Recognition: An Emerging Biometric Technology. Proceedings of the IEEE 85(9), 1348–1363 (1997)

    Article  Google Scholar 

  4. Daugman, J.G.: How Iris Recognition Works. IEEE Transactions on Circuits and Systems for Video Technology 14(1), 21–30 (2004)

    Article  Google Scholar 

  5. Bui, T.D., Chen, G.: Invariant Fourier-Wavelet Descriptor for Pattern Recognition. Pattern Recognition 32(7), 1083–1088 (1999)

    Article  Google Scholar 

  6. Bracewell, R.N.: The Fourier Transform and Its Application. The McGraw-Hill Companies, New York (2000)

    Google Scholar 

  7. Casasent, D., Psaltis, D.: Position, Rotation, and Scale Invariant Optical Correlation. App. Opt. 15(7), 1795–1799 (1976)

    Article  Google Scholar 

  8. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press Publishing Company, London (1998)

    MATH  Google Scholar 

  9. Institute of Automation, Chinese academy of Science, CASIA Iris Image Database, http://www.sinobiometrics.com/chinese/chinese.htm

  10. Bernier, T., Jacques-André, L.: A New Method for Representing and Matching Shapes of Natural Objects. Vol. 36, no. 8. Pattern Recognition, 1711-1723 (2003)

    Google Scholar 

  11. Grossmann, A., Morlet, J.: Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape. SIAM Journal of Math. Anal. 15(4), 723–736 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ma, L., Tan, T., Wang, Y., Zhang, D.: Local Intensity Variation Analysis for Iris Recognition. Pattern Recognition 37, 1287–1298 (2004)

    Article  Google Scholar 

  13. Tang, Y.Y., Li, B.F., Ma, H., Liu, J.: Ring-Projection-Wavelet-Fractal Signatures, A Novel Approach to Feature Extraction. IEEE Trans. on circuits and systems- II: Analog and digital signal processing 45(8) (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, P.S., Chiang, CS., Liang, JR. (2005). Iris Recognition Using Fourier-Wavelet Features. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_2

Download citation

  • DOI: https://doi.org/10.1007/11527923_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics