Skip to main content

A Graph Matching Based Approach to Fingerprint Classification Using Directional Variance

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

Abstract

In the present paper we address the fingerprint classification problem with a structural pattern recognition approach. Our main contribution is the definition of modified directional variance in orientation vector fields. The new directional variance allows us to extract regions from fingerprints that are relevant for the classification in the Henry scheme. After processing the regions of interest, the resulting structures are converted into attributed graphs. The classification is finally performed with an efficient graph edit distance algorithm. The performance of the proposed classification method is evaluated on the NIST-4 database of fingerprints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Maltoni, D., Maio, D., Jain, A., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  2. Yager, N., Amin, A.: Fingerprint classification: A review. Pattern Analysis and Applications 7, 77–93 (2004)

    Article  MathSciNet  Google Scholar 

  3. Maio, D., Maltoni, D.: A structural approach to fingerprint classification. In: Proc. 13th Int. Conf. on Pattern Recognition, pp. 578–585 (1996)

    Google Scholar 

  4. Lumini, A., Maio, D., Maltoni, D.: Inexact graph matching for fingerprint classification. Machine Graphics and Vision, Special Issue on Graph Transformations in Pattern Generation and CAD 8, 231–248 (1999)

    Google Scholar 

  5. Marcialis, G., Roli, F., Serrau, A.: Fusion of statistical and structural fingerprint classifiers. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 310–317. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Yao, Y., Marcialis, G., Pontil, M., Frasconi, P., Roli, F.: Combining flat and structured representations for fingerprint classification with recursive neural networks and support vector machines. Pattern Recognition 36, 397–406 (2003)

    Article  Google Scholar 

  7. Karu, K., Jain, A.: Fingerprint classification. Pattern Recognition 29, 389–404 (1996)

    Article  Google Scholar 

  8. Kawagoe, M., Tojo, A.: Fingerprint pattern classification. Pattern Recognition 17, 295–303 (1984)

    Article  Google Scholar 

  9. Kass, M., Witkin, A.: Analyzing oriented patterns. Computer Vision, Graphics, and Image Processing 37, 362–385 (1987)

    Article  Google Scholar 

  10. Bigun, J., Granlund, G.: Optimal orientation detection of linear symmetry. In: Proc. 1st Int. Conf. on Computer Vision, pp. 433–438. IEEE Computer Society Press, Los Alamitos (1987)

    Google Scholar 

  11. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. Journal of Pattern Recognition and Artificial Intelligence 18, 265–298 (2004)

    Article  Google Scholar 

  12. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics 13, 353–363 (1983)

    MATH  Google Scholar 

  13. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1, 245–253 (1983)

    Article  MATH  Google Scholar 

  14. Neuhaus, M., Bunke, H.: An error-tolerant approximate matching algorithm for attributed planar graphs and its application to fingerprint classification. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 180–189. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Zhou, R., Quek, C., Ng, G.: A novel single-pass thinning algorithm and an effective set of performance criteria. Pattern Recognition Letters 16, 1267–1275 (1995)

    Article  Google Scholar 

  16. Watson, C., Wilson, C.: NIST special database 4, fingerprint database (1992)

    Google Scholar 

  17. Cappelli, R., Lumini, A., Maio, D., Maltoni, D.: Fingerprint classification by directional image partitioning. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 402–421 (1999)

    Article  Google Scholar 

  18. Serrau, A., Marcialis, G., Bunke, H., Roli, F.: An experimental comparison of fingerprint classification methods using graphs. In: Proc. 5th Int. Workshop on Graph-based Representations in Pattern Recognition (2005) (submitted)

    Google Scholar 

  19. Jain, A., Prabhakar, S., Hong, L.: A multichannel approach to fingerprint classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 348–359 (1999)

    Article  Google Scholar 

  20. Neuhaus, M., Bunke, H.: A probabilistic approach to learning costs for graph edit distance. In: Kittler, J., Petrou, M., Nixon, M. (eds.) Proc. 17th Int. Conference on Pattern Recognition, vol. 3, pp. 389–393 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neuhaus, M., Bunke, H. (2005). A Graph Matching Based Approach to Fingerprint Classification Using Directional Variance. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_20

Download citation

  • DOI: https://doi.org/10.1007/11527923_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics