Skip to main content

Face Recognition Based on Recursive Bayesian Fusion of Multiple Signals and Results from Expert Classifier Sets

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

  • 2286 Accesses

Abstract

We report on a system for person identification based on face images. The system uses sequences of visual wavelength intensity and thermal image pairs as input and carries out classification with a set of expert classifiers (such as ANN or SVM) for each input signal separately. The decisions of the classifiers are integrated both over the two signals and over time as new image pairs arrive, using stochastic recursive inference based on Bayes formula. Our experimental results indicate that both recognition and rejection rates are higher than those for the expert classifiers alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Trans. on Pattern Recognition and Machine Intelligence 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  2. Jain, K., Pankanti, S., Prabhakar, S., Hong, L.,, R.: Biometrics: A Grand Challenge. In: Proc. of the 17th International Conference on Pattern Recognition, Cambridge, UK, vol. 2, pp. 935–942 (2004)

    Google Scholar 

  3. Bigun, J., Fierrez-Aguilar, J., Ortega-Garcia, J., Gonzalez-Rodriguez, J.: Multimodal Biometric Authentication Using Quality Signals in Mobile Communications. In: Proc. of 12th International Conference on Image Analysis and Processing, pp. 2–11. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  4. Hild, M., Yoshida, K., Hashimoto, M.: Pose-Invariant Face-Head Identification Using a Bank of Neural Networks and the 3-D Neck Reference Point. In: Nasrabadi, N.M., Katsaggelos, A.K. (eds.) Applications of Artificial Neural Networks in Image Processing VIII. Proc. of SPIE-IS&T Electronic Imaging, SPIE, vol. 5015, pp. 47–54 (2003)

    Google Scholar 

  5. Roli, F., Kittler, J., Fumera, G., Muntoni, D.: An experimental comparison of classifier fusion rules for multimodal personal identity verification systems. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, pp. 325–335. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Zhang, W., Shan, S., Gao, W., Chang, Y., Cao, B., Yang, P.: Information Fusion in Face Identification. In: Proc. of the 17th International Conference on Pattern Recognition, Cambridge UK, vol. 3, pp. 950–953 (2004)

    Google Scholar 

  7. Friedrich, G., Yeshurun, Y.: Seeing people in the dark: Face recognition in infrared images. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 348–359. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Gong, S., McKenna, S.J., Psarrou, A.: Dynamic Vision – From Images to Face Recognition, ch. 10. Imperial College Press, London (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hild, M., Kuzui, R. (2005). Face Recognition Based on Recursive Bayesian Fusion of Multiple Signals and Results from Expert Classifier Sets. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_25

Download citation

  • DOI: https://doi.org/10.1007/11527923_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics