Skip to main content

Post-processing on LDA’s Discriminant Vectors for Facial Feature Extraction

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

  • 2302 Accesses

Abstract

Linear discriminant analysis (LDA) based methods have been very successful in face recognition. Recently, pre-processing approaches have been used to further improve recognition performance but few investigations have been made into the use of post-processing techniques. This paper intends to explore the feasibility and efficiency of the post-processing technique on LDA’s discriminant vectors. In this paper we propose a Gaussian filtering approach to post-process the discriminant vectors. The results of our experiments demonstrate that, post-processing technique can be used to improve recognition performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Computing Surveys 35, 399–458 (2003)

    Article  Google Scholar 

  2. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience 3, 71–86 (1991)

    Article  Google Scholar 

  3. Belhumeour, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces versus Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. Pattern Analysis and Machine Intelligence 19, 711–720 (1997)

    Article  Google Scholar 

  4. Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. Image Processing 11, 467–476 (2002)

    Article  Google Scholar 

  5. Yilmaz, A., Gokmen, M.: Eigenhill vs. eigenface and eigen edge. Pattern Recognition 34, 181–184 (2001)

    Article  Google Scholar 

  6. Chien, J.T., Wu, C.C.: Discriminant waveletfaces and nearest feature classifiers for face recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 24, 1644–1649 (2002)

    Article  Google Scholar 

  7. Wu, J., Zhou, Z.-H.: Face recognition with one training image per person. Pattern Recognition Lett. 23, 1711–1719 (2002)

    Article  MATH  Google Scholar 

  8. Zhao, W., Chellappa, R., Phillips, P.J.: Subspace Linear Discriminant Analysis for Face Recognition. Tech Report CAR-TR-914, Center for Automation Research, University of Maryland (1999)

    Google Scholar 

  9. Dai, D., Yuen, P.C.: Regularized discriminant analysis and its application to face recognition. Pattern Recognition 36, 845–847 (2003)

    Article  MATH  Google Scholar 

  10. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, London (1990)

    MATH  Google Scholar 

  11. Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recognition 34, 2067–2070 (2001)

    Article  MATH  Google Scholar 

  12. Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N.: Face recognition using LDA-based algorithms. IEEE Trans. Neural Networks 14, 195–200 (2003)

    Article  Google Scholar 

  13. The ORL face database. AT&T (Olivetti) Research Laboratories, Cambridge, U.K, Online: Available at http://www.uk.research.att.com/facedatabase.html

  14. Pratt, W.K.: Digital Image Processing, 2nd edn. Wiley, New York (1991)

    MATH  Google Scholar 

  15. Liu, W., Wang, Y., Li, S.Z., Tan, T.: Null space approach of Fisher discriminant analysis for face recognition. In: Ito, T., Abadi, M. (eds.) TACS 1997. LNCS, vol. 1281, pp. 32–44. Springer, Heidelberg (1997)

    Google Scholar 

  16. Zheng, W., Zhao, L., Zou, C.: An efficient algorithm to solve the small sample size problem for LDA. Pattern Recognition 37, 1077–1079 (2004)

    Article  MATH  Google Scholar 

  17. Zheng, W., Zou, C., Zhao, L.: Real-time face recognition using Gram-Schmidt orthogonalization for LDA. In: The 17th International Conference on Pattern Recognition (ICPR 2004), pp. 403–406 (2004)

    Google Scholar 

  18. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1104 (2000)

    Article  Google Scholar 

  19. Liu, C., Wechsler, H.: Enhanced Fisher linear discriminant models for face recognition. In: The 14th International Conference on Pattern Recognition (ICPR 1998), pp. 1368–1372 (1998)

    Google Scholar 

  20. Yang, J., Yang, J.-Y., Frangi, A.F.: Combined Fisherfaces framework. Image and Vision Computing 21, 1037–1044 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, K., Zuo, W., Zhang, D. (2005). Post-processing on LDA’s Discriminant Vectors for Facial Feature Extraction. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_36

Download citation

  • DOI: https://doi.org/10.1007/11527923_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics